This article conducted an analysis on quantitative properties and stability in a $ \beta $-normed space for a category of boundary value problems of nonlinear two-term fractional-order sequential differential equations with variable coefficients. The original problem was converted into an equivalent integral equation. Banach's fixed-point principle and Shaefer's fixed-point theorem were exploited to ensure that two existence conditions of the solutions for the problems were established. In addition, the stability known as $ \beta $-Ulam-Hyers for such problems has also been analyzed. Illustrative examples demonstrated practical applications of the work.
Citation: Debao Yan. Quantitative analysis and stability results in $ \beta $-normed space for sequential differential equations with variable coefficients involving two fractional derivatives[J]. AIMS Mathematics, 2024, 9(12): 35626-35644. doi: 10.3934/math.20241690
This article conducted an analysis on quantitative properties and stability in a $ \beta $-normed space for a category of boundary value problems of nonlinear two-term fractional-order sequential differential equations with variable coefficients. The original problem was converted into an equivalent integral equation. Banach's fixed-point principle and Shaefer's fixed-point theorem were exploited to ensure that two existence conditions of the solutions for the problems were established. In addition, the stability known as $ \beta $-Ulam-Hyers for such problems has also been analyzed. Illustrative examples demonstrated practical applications of the work.
[1] | A. R. Marawan, Applying fractional quantum mechanics to systems with electrical screening effects, Chaos Solitons Fract., 150 (2021), 111209. https://doi.org/10.1016/j.chaos.2021.111209 doi: 10.1016/j.chaos.2021.111209 |
[2] | R. Garra, E. Orsingher, F. Polito, A note on Hadamard fractional differential equations with varying coefficients and their applications in probability, Mathematics, 6 (2018), 4. https://doi.org/10.3390/math6010004 doi: 10.3390/math6010004 |
[3] | K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012 |
[4] | S. Dubey, S. Chakraverty, Hybrid techniques for approximate analytical solution of space and time-fractional telegraph equations, Pramana J. Phys., 97 (2023), 11. https://doi.org/10.1007/s12043-022-02482-0 doi: 10.1007/s12043-022-02482-0 |
[5] | M. Frackiewicz, H. Palus, Application of fractional derivatives in image quality assessment indices, Appl. Numer. Math., 204 (2024), 101–110. https://doi.org/10.1016/j.apnum.2024.06.005 doi: 10.1016/j.apnum.2024.06.005 |
[6] | S. Li, B. Cao, Beyond phonon hydrodynamics: Nonlocal phonon heat transport from spatial fractional-order Boltzmann transport equation, AIP Adv., 10 (2020), 105004. https://doi.org/10.1063/5.0021058 doi: 10.1063/5.0021058 |
[7] | L. Yang, S. Heidarkhani, J. Zuo, A fractional magnetic system with critical nonlinearities, Fractal Fract., 8 (2024), 380. https://doi.org/10.3390/fractalfract8070380 doi: 10.3390/fractalfract8070380 |
[8] | R. Wang, Y. Sui, Method for measuring the fractional derivative of a two-dimensional magnetic field based on Taylor-Riemann series, Fractal Fract., 8 (2024), 375. https://doi.org/10.3390/fractalfract8070375 doi: 10.3390/fractalfract8070375 |
[9] | T. Bouali, R. Guefaifia, S. Boulaaras, T. Radwan, Existence of positive solutions for non-local magnetic fractional systems, Fractal Fract., 8 (2024), 381. https://doi.org/10.3390/fractalfract8070381 doi: 10.3390/fractalfract8070381 |
[10] | S. Etemad, S. K. Ntouyas, I. Stamova, J. Tariboon, On solutions of two Post-Quantum fractional generalized sequential Navier problems: An application on the elastic beam, Fractal Fract., 8 (2024), 236. https://doi.org/10.3390/fractalfract8040236 doi: 10.3390/fractalfract8040236 |
[11] | F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004 |
[12] | H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019 |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of aractional aifferential equations, Amsterdam: Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 |
[14] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[15] | S. Rezapour, B. Tellab, C. T. Deressa, S. Etemad, K. Nonlaopon, H-U-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method, Fractal Fract., 5 (2021), 166. https://doi.org/10.3390/fractalfract5040166 doi: 10.3390/fractalfract5040166 |
[16] | Y. A. Madani, M. N. A. Rabih, F. A. Alqarni, Z. Ali, K. A. Aldwoah, M. Hleili, Existence, uniqueness, and stability of a nonlinear tripled fractional order differential system, Fractal Fract., 8 (2024), 416. https://doi.org/10.3390/fractalfract8070416 doi: 10.3390/fractalfract8070416 |
[17] | Asma, A. Ali, K. Shah, F. Jarad, Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions, Adv. Differ. Equ., 2019 (2019), 7. https://doi.org/10.1186/s13662-018-1943-x doi: 10.1186/s13662-018-1943-x |
[18] | V. S. Ertrk, A. Ali, K. Shah, P. Kumar, T. Abdeljawad, Existence and stability results for nonlocal boundary value problems of fractional order, Bound. Value Probl., 2022 (2022), 25. https://doi.org/10.1186/s13661-022-01606-0 doi: 10.1186/s13661-022-01606-0 |
[19] | P. Wang, B. Han, J. Bao, The existence and Ulam stability analysis of a multi-term implicit fractional differential equation with boundary conditions, Fractal Fract., 8 (2024), 311. https://doi.org/10.3390/fractalfract8060311 doi: 10.3390/fractalfract8060311 |
[20] | M. Yaseen, S. Mumtaz, R. George, A. Hussain, H. A. Nabwey, Darbo's fixed-point theorem: Establishing existence and uniqueness results for hybrid Caputo-Hadamard fractional sequential differential equations, Fractal Fract., 8 (2024), 326. https://doi.org/10.3390/fractalfract8060326 doi: 10.3390/fractalfract8060326 |
[21] | K. Shah, I. Ahmad, J. J. Nieto, G. U. Rahman, T. Abdeljawad, Qualitative investigation of nonlinear fractional coupled pantograph impulsive differential equations, Qual. Theor. Dyn. Syst., 21 (2022), 131. https://doi.org/10.1007/s12346-022-00665-z doi: 10.1007/s12346-022-00665-z |
[22] | I. Talib, A. Raza, A. Atangana, M. B. Riaz, Numerical study of multi-order fractional differential equations with constant and variable coefficients, J. Taibah Univ. Sci., 16 (2022), 608–620. https://doi.org/10.1080/16583655.2022.2089831 doi: 10.1080/16583655.2022.2089831 |
[23] | N. A. Khan, N. U. Khan, M. Ayaz, A. Mahmood, N. Fatima, Numerical study of time-fractional fourth-order differential equations with variable coefficients, J. King Saud Univ. Sci., 23 (2011), 91–98. https://doi.org/10.1016/j.jksus.2010.06.012 doi: 10.1016/j.jksus.2010.06.012 |
[24] | Y. Bolat, On the oscillation of fractional-order delay differential equations with constant coefficients, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3988–3993. https://doi.org/10.1016/j.cnsns.2014.01.005 doi: 10.1016/j.cnsns.2014.01.005 |
[25] | Y. Wang, Z. Han, S. Sun, Comment on "On the oscillation of fractional-order delay differential equations with constant coefficients" [Commun Nonlinear Sci 19(11) (2014) 3988–3993], Commun. Nonlinear Sci. Numer. Simul., 26 (2015), 195–200. https://doi.org/10.1016/j.cnsns.2014.12.017 doi: 10.1016/j.cnsns.2014.12.017 |
[26] | M. Yi, J. Huang, Wavelet operational matrix method for solving fractional differential equations with variable coefficients, Appl. Math. Comput., 230 (2014), 383–394. https://doi.org/10.1016/j.amc.2013.06.102 doi: 10.1016/j.amc.2013.06.102 |
[27] | S. Zhu, H. Wang, F. Li, Solutions for Hilfer-Type linear fractional integro-differential equations with a variable coefficient, Fractal Fract., 8 (2024), 63. https://doi.org/10.3390/fractalfract8010063 doi: 10.3390/fractalfract8010063 |
[28] | J. E. Restrepo, D. Suragan, Hilfer-type fractional differential equations with variable coefficients, Chaos Solitons Fract., 150 (2021), 111146. https://doi.org/10.1016/j.chaos.2021.111146 doi: 10.1016/j.chaos.2021.111146 |
[29] | J. E. Restrepo, M. Ruzhansky, D. Suragan, Explicit solutions for linear variable-coefficient fractional differential equations with respect to functions, Appl. Math. Comput., 403 (2021), 126177. https://doi.org/10.1016/j.amc.2021.126177 doi: 10.1016/j.amc.2021.126177 |
[30] | S. Pak, H. Choi, K. Sin, K. Ri, Analytical solutions of linear inhomogeneous fractional differential equation with continuous variable-coefficients, Adv. Differ. Equ., 2019 (2019), 256. https://doi.org/10.1186/s13662-019-2182-5 doi: 10.1186/s13662-019-2182-5 |
[31] | A. A. Kilbas, M. Rivero, L. Rodriguez-Germa, J. J. Trujillo, $\alpha$-Analytic solutions of some linear fractional differential equations with variable coefficients, Appl. Math. Comput., 187 (2007), 239–249. https://doi.org/10.1016/j.amc.2006.08.121 doi: 10.1016/j.amc.2006.08.121 |
[32] | J. E. Restrepo, M. Ruzhansky, D. Suragan, Explicit representations of solutions for linear fractional differential equation with variable coefficients, AarXiv: 2006.15356, 2020. https://doi.org/10.48550/arXiv.2006.15356 |
[33] | A. Babakhani, E. Enteghami, Existence of positive solutions for multiterm fractional differential equations of finite delay with polynomial coefficients, Abstr. Appl. Anal., 2009 (2009), 768920. https://doi.org/10.1155/2009/768920 doi: 10.1155/2009/768920 |
[34] | S. Aljoudi, B. Ahmad, J. J. Nieto, A. Alsaedi, On coupled Hadamard type sequential fractional differential equations with variable coefficients and nonlocal integral boundary conditions, Filomat, 31 (2017), 6041–6049. https://doi.org/10.2298/FIL1719041A doi: 10.2298/FIL1719041A |
[35] | C. Bai, Positive solutions for nonlinear fractional differential equations with coefficient that changes sign, Nonlinear Anal., 64 (2006), 677–685. https://doi.org/10.1016/j.na.2005.04.047 doi: 10.1016/j.na.2005.04.047 |
[36] | D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor, Chaos Solitons Fract., 186 (2024), 115278. https://doi.org/10.1016/j.chaos.2024.115278 doi: 10.1016/j.chaos.2024.115278 |
[37] | A. Fernandez, J. E. Restrepo, D. Suragan, On linear fractional differential equations with variable coefficients, Appl. Math. Comput., 432 (2022), 127370. https://doi.org/10.1016/j.amc.2022.127370 doi: 10.1016/j.amc.2022.127370 |
[38] | T. M. Atanackovic, B. Stankovic, Linear fractional differential equation with variable coefficients Ⅰ, Bull. Cl. Sci. Math. Nat. Sci. Math., 38 (2013), 27–42. Available from: https://www.jstor.org/stable/44097195 |
[39] | T. M. Atanackovic, B. Stankovic, Linear fractional differential equation with variable coefficients Ⅱ, Bull. Cl. Sci. Math. Nat. Sci. Math., 39 (2014), 53–78. Available from: http://www.jstor.org/stable/26359041 |
[40] | W. Du, M. Feckan, M. Kostic, D. Velinov, $\beta$-Ulam-Hyers stability and existence of solutions for non-instantaneous impulsive fractional integral equations, Fractal Fract., 8 (2024), 469. https://doi.org/10.3390/fractalfract8080469 doi: 10.3390/fractalfract8080469 |
[41] | X. Yu, Existence and $\beta$-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses, Adv. Differ. Equ., 2015 (2015), 104. https://doi.org/10.1186/s13662-015-0415-9 doi: 10.1186/s13662-015-0415-9 |
[42] | D. R. Smart, Fixed point theorems, Cambridge: Cambridge University Press, 1980. |
[43] | Y. Wang, J. Xu, Sobolev space, Nanjing: Southeast University Press, 2003. |
[44] | I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babeş Bolyai Math., 54 (2009), 125–133. |