Integral inequalities and the Mittag-Leffler function play a crucial role in many branches of mathematics and applications, including fractional calculus, mathematical physics, and engineering. In this paper, we introduced an extended generalized Mittag-Leffler function that involved several well-known Mittag-Leffler functions as a special case. We also introduced an associated generalized fractional integral to obtain some estimates for fractional integral inequalities of the Hermite-Hadamard and Hermite-Hadamard-Fejér types. This article offered several analytical tools that will be useful to anyone working in this field. To demonstrate the veracity of our findings, we offered a few numerical and graphical examples. A few applications of modified Bessel functions and unitarily invariant norm of matrices were also given.
Citation: Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro. Some fractional integral inequalities involving extended Mittag-Leffler function with applications[J]. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689
Integral inequalities and the Mittag-Leffler function play a crucial role in many branches of mathematics and applications, including fractional calculus, mathematical physics, and engineering. In this paper, we introduced an extended generalized Mittag-Leffler function that involved several well-known Mittag-Leffler functions as a special case. We also introduced an associated generalized fractional integral to obtain some estimates for fractional integral inequalities of the Hermite-Hadamard and Hermite-Hadamard-Fejér types. This article offered several analytical tools that will be useful to anyone working in this field. To demonstrate the veracity of our findings, we offered a few numerical and graphical examples. A few applications of modified Bessel functions and unitarily invariant norm of matrices were also given.
[1] | A. Wiman, Uber den fundamentalsatz in der teorie der funktionen $E_{\alpha}(x)$, Acta Math., 29 (1905), 191–201. https://doi.org/10.1007/BF02403202 doi: 10.1007/BF02403202 |
[2] | E. M. Wright, On the coefficients of power series having exponential singularities, J. Lond. Math. Soc., 8 (1933), 71–79. https://doi.org/10.1112/jlms/s1-8.1.71 doi: 10.1112/jlms/s1-8.1.71 |
[3] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15. |
[4] | A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. https://doi.org/10.1016/j.jmaa.2007.03.018 doi: 10.1016/j.jmaa.2007.03.018 |
[5] | H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055 |
[6] | T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1–13. |
[7] | M. Andric, G. Farid, J. Pecaric, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377–1395. https://doi.org/10.1515/fca-2018-0072 doi: 10.1515/fca-2018-0072 |
[8] | D. Bansal, K. Mehrez, On a new class of functions related with Mittag-Leffler and Wright functions and their properties, Commun. Korean Math. S., 35 (2020), 1123–1132. https://doi.org/10.4134/CKMS.c200022 doi: 10.4134/CKMS.c200022 |
[9] | R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191–203. |
[10] | M. E. Shahed, A. Salem, An extension of Wright function and its properties, J. Math., 2015 (2015), 950728. https://doi.org/10.1155/2015/950728 doi: 10.1155/2015/950728 |
[11] | M. A. Pathan, M. G. B. Saad, Mittag-Leffler-type function of arbitrary order and their application in the fractional kinetic equation, Partial Differ. Eq. Appl., 4 (2023), 15. https://doi.org/10.1007/s42985-023-00234-2 doi: 10.1007/s42985-023-00234-2 |
[12] | B. Shiri, D. Baleanu, All linear fractional derivatives with power functions' convolution kernel and interpolation properties, Chaos Soliton. Fract., 170 (2023), 113399. https://doi.org/10.1016/j.chaos.2023.113399 doi: 10.1016/j.chaos.2023.113399 |
[13] | H. Askari, A. Ansari, Asymptotic analysis of three-parameter Mittag-Leffler function with large parameters, and application to sub-diffusion equation involving Bessel operator, Fract. Calc. Appl. Anal., 27 (2024), 1162–1185. https://doi.org/10.1007/s13540-024-00263-7 doi: 10.1007/s13540-024-00263-7 |
[14] | R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin: Springer, 2014. https://doi.org/10.1007/978-3-662-43930-2-6 |
[15] | G. Rajchakit, P. Chanthorn, M. Niezabitowski, R. Raja, D. Baleanu, A. Pratap, Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks, Neurocomputing, 417 (2020), 290–301. https://doi.org/10.1016/j.neucom.2020.07.036 doi: 10.1016/j.neucom.2020.07.036 |
[16] | G. Abbas, G. Farid, Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function, Cogent Math., 3 (2016), 1269589. https://doi.org/10.1080/23311835.2016.1269589 doi: 10.1080/23311835.2016.1269589 |
[17] | M. Andric, Fractional integral inequalities of Hermite-Hadamard type for (h, g; m)-convex functions with extended Mittag-Leffler function, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6060301 doi: 10.3390/fractalfract6060301 |
[18] | M. V. Cortez, A. Latif, R. Hussain, Some fractional integral inequalities by way of Raina fractional integrals, Symmetry, 15 (2023), 1935. https://doi.org/10.3390/sym15101935 doi: 10.3390/sym15101935 |
[19] | A. Khan, H. M. Akhtar, K. S. Nisar, D. L. Suthar, Pathway fractional integral formula involving an extended Mittag-Leffler function, Analysis, 42 (2022), 141–147. https://doi.org/10.1515/anly-2021-0039 doi: 10.1515/anly-2021-0039 |
[20] | T. Du, Y. Long, The multi-parameterized integral inequalities for multiplicative Riemann-Liouville fractional integrals, J. Math. Anal. Appl, 541 (2025), 128692. https://doi.org/10.1016/j.jmaa.2024.128692 doi: 10.1016/j.jmaa.2024.128692 |
[21] | H. M. Srivastava, M. K. Bansal, P. Harjule, A class of fractional integral operators involving a certain general multiindex Mittag-Leffler function, Ukr. Math. J., 75 (2024), 1255–1271. https://doi.org/10.1007/s11253-023-02259-7 doi: 10.1007/s11253-023-02259-7 |
[22] | H. Chen, U. N. Katugampola, Hermite-Hdamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018 |
[23] | S. Hussain, S. Rafeeq, Some new Hermite-Hadamard type integral inequalities for functions whose $n$-th derivatives are logarithmically relative $h$-preinvex, Miskolc Math. Notes, 18 (2017), 837–849. https://doi.org/10.18514/MMN.2017.1831 doi: 10.18514/MMN.2017.1831 |
[24] | J. E. Pecaric, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, San Diego: Academic Press Limited, 1 (1992). |
[25] | S. Hussain, S. Rafeeq, Y. M. Chu, S. Khalid, S. Saleem, On some new generalized fractional Bullen-type inequalities with applications, J. Inequal. Appl., 2022 (2022), 138. https://doi.org/10.1186/s13660-022-02878-x doi: 10.1186/s13660-022-02878-x |
[26] | A. A. Al-Gonah, W. K. Mohammed, A new forms of extended hypergeometric functions and their properties, Eng. Appl. Sci. Lett., 4 (2021), 30–41. |
[27] | E. D. Rainville, Special functions, New York: The Macmillan Company, 1 (1960). |
[28] | M. Sababheh, Convex functions and means of matrices, Math. Inequal. Appl., 20 (2017), 29–47. https://doi.org/10.7153/mia-20-03 |
[29] | G. N. Watson, A treatise on the theory of Bessel functions, London: Cambridge University Press, 1 (1922). |