Let $ \mathbb{F}_q $ be the finite field with $ q = p^{k} $ elements, and $ p_{1}, p_{2} $ be two distinct prime numbers different from $ p $. In this paper, we first calculate all the $ q $-cyclotomic cosets modulo $ p_1p_2^t $ as a preparation for the following parts. Then we give the explicit generator polynomials of all the constacyclic codes of length $ p_1p_2^tp^s $ over $ \mathbb{F}_q $ and their dual codes. In the rest of this paper, we determine all self-dual cyclic codes of length $ p_1p_2^t p^s $ and their enumeration. This answers a question recently asked by B. Chen, H.Q.Dinh and Liu. In the last section, we calculate the case of length $ 5\ell p^{s} $ as an example.
Citation: Hongfeng Wu, Li Zhu. Repeated-root constacyclic codes of length $ p_1p_2^t p^s $ and their dual codes[J]. AIMS Mathematics, 2023, 8(6): 12793-12818. doi: 10.3934/math.2023644
Let $ \mathbb{F}_q $ be the finite field with $ q = p^{k} $ elements, and $ p_{1}, p_{2} $ be two distinct prime numbers different from $ p $. In this paper, we first calculate all the $ q $-cyclotomic cosets modulo $ p_1p_2^t $ as a preparation for the following parts. Then we give the explicit generator polynomials of all the constacyclic codes of length $ p_1p_2^tp^s $ over $ \mathbb{F}_q $ and their dual codes. In the rest of this paper, we determine all self-dual cyclic codes of length $ p_1p_2^t p^s $ and their enumeration. This answers a question recently asked by B. Chen, H.Q.Dinh and Liu. In the last section, we calculate the case of length $ 5\ell p^{s} $ as an example.
[1] | G. Bakshi, M. Raka, A class of constacyclic codes over a finite field, Finite Fields Th. Appl., 18 (2012), 362–377. http://dx.doi.org/10.1016/j.ffa.2011.09.005 doi: 10.1016/j.ffa.2011.09.005 |
[2] | A. Batoul, K. Guenda, T. Aaron Gulliver, On repeated-root constacyclic codes of length $2^amp^r$ over finite field, arXiv: 1505.00356v1. |
[3] | E. Berlekamp, Algebraic coding theory, New York: McGraw-Hill Book Company, 1968. |
[4] | G. Castagnoli, J. Massey, P. Schoeller, N. von Seemann, On repeated-root cyclic codes, IEEE T. Inform. Theory, 37 (1991), 337–342. http://dx.doi.org/10.1109/18.75249 doi: 10.1109/18.75249 |
[5] | B. Chen, H. Dinh, H. Liu, Repeated-root constacyclic codes of length $\ell p^s$ and their duals, Discrete Appl. Math., 177 (2014), 60–70. http://dx.doi.org/10.1016/j.dam.2014.05.046 doi: 10.1016/j.dam.2014.05.046 |
[6] | B. Chen, H. Dinh, H. Liu, Repeated-root constacyclic codes of length 2$\ell^m p^n$, Finite Fields Th. Appl., 33 (2015), 137–159. http://dx.doi.org/10.1016/j.ffa.2014.11.006 doi: 10.1016/j.ffa.2014.11.006 |
[7] | B. Chen, Y. Fan, L. Lin, H. Liu, Constacyclic codes over finite fields, Finite Fields Th. Appl., 18 (2012), 1217–1231. http://dx.doi.org/10.1016/j.ffa.2012.10.001 doi: 10.1016/j.ffa.2012.10.001 |
[8] | H. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Th. Appl., 18 (2012), 133–143. http://dx.doi.org/10.1016/j.ff a.2011.07.003 doi: 10.1016/j.ffa.2011.07.003 |
[9] | H. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Math., 313 (2013), 983–991. http://dx.doi.org/10.1016/j.disc.2013.01.024 doi: 10.1016/j.disc.2013.01.024 |
[10] | H. Dinh, On repeated-root constacyclic codes of length $4p^s$, Asian-Eur. J. Math., 6 (2013), 1350020. http://dx.doi.org/10.1142/S1793557113500204 doi: 10.1142/S1793557113500204 |
[11] | H. Dinh, Repeated-root cyclic and negacyclic codes of length $6p^s$, In: Ring theory and its applications, New York: Contemporary Mathematics, 2014, 69–87. http://dx.doi.org/10.1090/conm/609/12150 |
[12] | G. Hardy, E. Wright, An introduction to the theory of numbers, 5 Eds., Oxford: Clarendon Press, 1984. |
[13] | J. Lint, Repeated-root cyclic codes, IEEE T. Inform. Theory, 37 (1991), 343–345. http://dx.doi.org/10.1109/18.75250 |
[14] | L. Liu, L. Li, X. Kai, S. Zhu, Reapeated-root constacylic codes of length $3\ell p^{s}$ and their dual codes, Finite Fields Th. Appl., 42 (2016), 269–295. http://dx.doi.org/10.1016/j.ffa.2016.08.005 doi: 10.1016/j.ffa.2016.08.005 |
[15] | L. Liu, L. Li, L. Wang, S. Zhu, Reapeated-root Constacylic Codes of Length $n\ell p^{s}$, Discrete Math., 340 (2017), 2250–2261. http://dx.doi.org/10.1016/j.disc.2017.04.018 doi: 10.1016/j.disc.2017.04.018 |
[16] | A. Sharma, Repeated-root constacyclic codes of length $\ell^tp^s$ and their dual codes, Cryptogr. Commun., 7 (2015), 229–255. http://dx.doi.org/10.1007/s12095-014-0106-5 doi: 10.1007/s12095-014-0106-5 |
[17] | A. Sharma, S. Rani, Repeated-root constacyclic codes of length $4\ell^mp^n$, Finite Fields Th. Appl., 40 (2016), 163–200. http://dx.doi.org/10.1016/j.ffa.2016.04.001 doi: 10.1016/j.ffa.2016.04.001 |
[18] | Z. Wan, Lectures on finite fields and galois rings, New York: World Scientific, 2011. http://dx.doi.org/10.1142/8250 |
[19] | Y. Wu, Q. Yue, Factorizations of binomial polynomials and enumerations of LCD and self-dual constacyclic codes, IEEE T. Inform. Theory, 65 (2019), 1740–1751. http://dx.doi.org/10.1109/TIT.2018.2864200 doi: 10.1109/TIT.2018.2864200 |
[20] | Y. Wu, Q. Yue, S. Fan, Further factorization of $x^n-1$ over a finite field, Finite Fields Th. Appl., 54 (2018), 197–215. http://dx.doi.org/10.1016/j.ffa.2018.07.007 doi: 10.1016/j.ffa.2018.07.007 |