Research article

Repeated-root constacyclic codes of length $ p_1p_2^t p^s $ and their dual codes

  • Received: 18 September 2022 Revised: 25 October 2022 Accepted: 01 November 2022 Published: 30 March 2023
  • MSC : 11T71, 12Y05, 94B15

  • Let $ \mathbb{F}_q $ be the finite field with $ q = p^{k} $ elements, and $ p_{1}, p_{2} $ be two distinct prime numbers different from $ p $. In this paper, we first calculate all the $ q $-cyclotomic cosets modulo $ p_1p_2^t $ as a preparation for the following parts. Then we give the explicit generator polynomials of all the constacyclic codes of length $ p_1p_2^tp^s $ over $ \mathbb{F}_q $ and their dual codes. In the rest of this paper, we determine all self-dual cyclic codes of length $ p_1p_2^t p^s $ and their enumeration. This answers a question recently asked by B. Chen, H.Q.Dinh and Liu. In the last section, we calculate the case of length $ 5\ell p^{s} $ as an example.

    Citation: Hongfeng Wu, Li Zhu. Repeated-root constacyclic codes of length $ p_1p_2^t p^s $ and their dual codes[J]. AIMS Mathematics, 2023, 8(6): 12793-12818. doi: 10.3934/math.2023644

    Related Papers:

  • Let $ \mathbb{F}_q $ be the finite field with $ q = p^{k} $ elements, and $ p_{1}, p_{2} $ be two distinct prime numbers different from $ p $. In this paper, we first calculate all the $ q $-cyclotomic cosets modulo $ p_1p_2^t $ as a preparation for the following parts. Then we give the explicit generator polynomials of all the constacyclic codes of length $ p_1p_2^tp^s $ over $ \mathbb{F}_q $ and their dual codes. In the rest of this paper, we determine all self-dual cyclic codes of length $ p_1p_2^t p^s $ and their enumeration. This answers a question recently asked by B. Chen, H.Q.Dinh and Liu. In the last section, we calculate the case of length $ 5\ell p^{s} $ as an example.



    加载中


    [1] G. Bakshi, M. Raka, A class of constacyclic codes over a finite field, Finite Fields Th. Appl., 18 (2012), 362–377. http://dx.doi.org/10.1016/j.ffa.2011.09.005 doi: 10.1016/j.ffa.2011.09.005
    [2] A. Batoul, K. Guenda, T. Aaron Gulliver, On repeated-root constacyclic codes of length $2^amp^r$ over finite field, arXiv: 1505.00356v1.
    [3] E. Berlekamp, Algebraic coding theory, New York: McGraw-Hill Book Company, 1968.
    [4] G. Castagnoli, J. Massey, P. Schoeller, N. von Seemann, On repeated-root cyclic codes, IEEE T. Inform. Theory, 37 (1991), 337–342. http://dx.doi.org/10.1109/18.75249 doi: 10.1109/18.75249
    [5] B. Chen, H. Dinh, H. Liu, Repeated-root constacyclic codes of length $\ell p^s$ and their duals, Discrete Appl. Math., 177 (2014), 60–70. http://dx.doi.org/10.1016/j.dam.2014.05.046 doi: 10.1016/j.dam.2014.05.046
    [6] B. Chen, H. Dinh, H. Liu, Repeated-root constacyclic codes of length 2$\ell^m p^n$, Finite Fields Th. Appl., 33 (2015), 137–159. http://dx.doi.org/10.1016/j.ffa.2014.11.006 doi: 10.1016/j.ffa.2014.11.006
    [7] B. Chen, Y. Fan, L. Lin, H. Liu, Constacyclic codes over finite fields, Finite Fields Th. Appl., 18 (2012), 1217–1231. http://dx.doi.org/10.1016/j.ffa.2012.10.001 doi: 10.1016/j.ffa.2012.10.001
    [8] H. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Th. Appl., 18 (2012), 133–143. http://dx.doi.org/10.1016/j.ff a.2011.07.003 doi: 10.1016/j.ffa.2011.07.003
    [9] H. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Math., 313 (2013), 983–991. http://dx.doi.org/10.1016/j.disc.2013.01.024 doi: 10.1016/j.disc.2013.01.024
    [10] H. Dinh, On repeated-root constacyclic codes of length $4p^s$, Asian-Eur. J. Math., 6 (2013), 1350020. http://dx.doi.org/10.1142/S1793557113500204 doi: 10.1142/S1793557113500204
    [11] H. Dinh, Repeated-root cyclic and negacyclic codes of length $6p^s$, In: Ring theory and its applications, New York: Contemporary Mathematics, 2014, 69–87. http://dx.doi.org/10.1090/conm/609/12150
    [12] G. Hardy, E. Wright, An introduction to the theory of numbers, 5 Eds., Oxford: Clarendon Press, 1984.
    [13] J. Lint, Repeated-root cyclic codes, IEEE T. Inform. Theory, 37 (1991), 343–345. http://dx.doi.org/10.1109/18.75250
    [14] L. Liu, L. Li, X. Kai, S. Zhu, Reapeated-root constacylic codes of length $3\ell p^{s}$ and their dual codes, Finite Fields Th. Appl., 42 (2016), 269–295. http://dx.doi.org/10.1016/j.ffa.2016.08.005 doi: 10.1016/j.ffa.2016.08.005
    [15] L. Liu, L. Li, L. Wang, S. Zhu, Reapeated-root Constacylic Codes of Length $n\ell p^{s}$, Discrete Math., 340 (2017), 2250–2261. http://dx.doi.org/10.1016/j.disc.2017.04.018 doi: 10.1016/j.disc.2017.04.018
    [16] A. Sharma, Repeated-root constacyclic codes of length $\ell^tp^s$ and their dual codes, Cryptogr. Commun., 7 (2015), 229–255. http://dx.doi.org/10.1007/s12095-014-0106-5 doi: 10.1007/s12095-014-0106-5
    [17] A. Sharma, S. Rani, Repeated-root constacyclic codes of length $4\ell^mp^n$, Finite Fields Th. Appl., 40 (2016), 163–200. http://dx.doi.org/10.1016/j.ffa.2016.04.001 doi: 10.1016/j.ffa.2016.04.001
    [18] Z. Wan, Lectures on finite fields and galois rings, New York: World Scientific, 2011. http://dx.doi.org/10.1142/8250
    [19] Y. Wu, Q. Yue, Factorizations of binomial polynomials and enumerations of LCD and self-dual constacyclic codes, IEEE T. Inform. Theory, 65 (2019), 1740–1751. http://dx.doi.org/10.1109/TIT.2018.2864200 doi: 10.1109/TIT.2018.2864200
    [20] Y. Wu, Q. Yue, S. Fan, Further factorization of $x^n-1$ over a finite field, Finite Fields Th. Appl., 54 (2018), 197–215. http://dx.doi.org/10.1016/j.ffa.2018.07.007 doi: 10.1016/j.ffa.2018.07.007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1000) PDF downloads(70) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog