Research article

Forecasting stock prices based on multivariable fuzzy time series

  • Received: 26 December 2022 Revised: 17 March 2023 Accepted: 20 March 2023 Published: 30 March 2023
  • MSC : 62P20

  • With the development of the stock market, the proportion of the stock assets in the asset structure of the residents increases rapidly. Therefore, the research on the prediction of stocks has great theoretical significance and application potential. A key point of researching stock prices is how to pick out the main factors. In this study, principal component analysis (PCA) is applied to find out the main factors which mainly affect the stock price. Then an improved cluster analysis algorithm is proposed to fuzzy the data, and a qualitative analysis method is given to find the most suitable prediction set from the multiple fuzzy sets corresponding to the current fuzzy set. We also extend the inverse fuzzy number formula to a more general form to get the predicted value. Finally, Xishan Coal and Electricity Power (XSCE) and Taiwan Futures Exchange (TAIFEX) time series are predicted, using the proposed multivariate fuzzy time series method. The results show that the prediction error is lower than that of the previous models. The proposed method produces better forecasting performance.

    Citation: Zhi Liu. Forecasting stock prices based on multivariable fuzzy time series[J]. AIMS Mathematics, 2023, 8(6): 12778-12792. doi: 10.3934/math.2023643

    Related Papers:

  • With the development of the stock market, the proportion of the stock assets in the asset structure of the residents increases rapidly. Therefore, the research on the prediction of stocks has great theoretical significance and application potential. A key point of researching stock prices is how to pick out the main factors. In this study, principal component analysis (PCA) is applied to find out the main factors which mainly affect the stock price. Then an improved cluster analysis algorithm is proposed to fuzzy the data, and a qualitative analysis method is given to find the most suitable prediction set from the multiple fuzzy sets corresponding to the current fuzzy set. We also extend the inverse fuzzy number formula to a more general form to get the predicted value. Finally, Xishan Coal and Electricity Power (XSCE) and Taiwan Futures Exchange (TAIFEX) time series are predicted, using the proposed multivariate fuzzy time series method. The results show that the prediction error is lower than that of the previous models. The proposed method produces better forecasting performance.



    加载中


    [1] C. H. Aladag, Using multiplicative neuron model to establish fuzzy logic relationships, Expert Syst. Appl., 40 (2913), 850–853. https://doi.org/10.1016/j.eswa.2012.05.039 doi: 10.1016/j.eswa.2012.05.039
    [2] S. N. Arslan, O. C. Yolcu, A hybrid sigma-pi neural network for combined intuitionistic fuzzy time series prediction model, Neural Comput. Appl., 34 (2022), 12895–12917. https://doi.org/10.1007/s00521-022-07138-z doi: 10.1007/s00521-022-07138-z
    [3] E. Bas, C. Grosan, E. Egrioglu, U. Yolcu, High order fuzzy time series method based on Pi-Sigma neural network, Eng. Appl. Arti. Intel., 72 (2018), 350–356. https://doi.org/10.1016/j.engappai.2018.04.017 doi: 10.1016/j.engappai.2018.04.017
    [4] S. M. Chen, Forecasting enrollments based on fuzzy time series, Fuzzy Sets Syst., 81 (1996), 311–319. https://doi.org/10.1016/0165-0114(95)00220-0 doi: 10.1016/0165-0114(95)00220-0
    [5] S. M. Chen, J. R. Hwang, Temperature prediction using fuzzy time series, IEEE Trans. Syst. Man Cybern. B Cybern., 30 (2000), 263–275. https://doi.org/10.1109/3477.836375 doi: 10.1109/3477.836375
    [6] S. M. Chen, Forecasting enrollments based on high-order fuzzy time series, Cybern. Syst., 33 (2002), 1–16. https://doi.org/10.1080/019697202753306479 doi: 10.1080/019697202753306479
    [7] S. M. Chen, N. Y. Wang, J. S. Pan, Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships, Expert Syst. Appl., 36 (2009), 11070–11076. https://doi.org/10.1016/j.eswa.2009.02.085 doi: 10.1016/j.eswa.2009.02.085
    [8] M. Y. Chen, B. T. Chen, A hybrid fuzzy time series model based on granular computing for stock price forecasting, Inf. Sci., 294 (2015), 227–241. https://doi.org/10.1016/j.ins.2014.09.038 doi: 10.1016/j.ins.2014.09.038
    [9] J. Dombi, T. Jónás, Z. E. Tóth, Fuzzy time series models using pliant-and asymptotically pliant arithmetic-based inference, Neural Process. Lett., 52 (2020), 21–55. https://doi.org/10.1007/s11063-018-9927-0 doi: 10.1007/s11063-018-9927-0
    [10] H. Hotelling, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24 (1933), 498–520. https://doi.org/10.1037/h0070888 doi: 10.1037/h0070888
    [11] J. E. Jackson, G. S. Mudholkar, Control procedures for residuals associated with principal component analysis, Technometrics, 21 (1979), 341–349. https://doi.org/10.1080/00401706.1979.10489779 doi: 10.1080/00401706.1979.10489779
    [12] D. E. Johnson, Applied multivariate methods for data analysis, Duxbury Resource Center, 1998, 93–111.
    [13] I. Jolliffe, Principal component analysis, New York: Springer, 2002. https://doi.org/10.1007/b98835
    [14] K. Karhunen, On linear methods in probability theory, RAND Corporation, 1960, 16–28.
    [15] L. W. Lee, L. H. Wang, S. M. Chen, Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques, Expert Syst. Appl., 34 (2008), 328–336. http://dx.doi.org/10.1016/j.eswa.2006.09.007 doi: 10.1016/j.eswa.2006.09.007
    [16] W. J. Lee, J. Hong, A hybrid dynamic and fuzzy time series model for mid-term power load forecasting, International, Int. J. Elec. Power Energy Syst., 64 (2015), 1057–1062. http://dx.doi.org/10.1016/j.ijepes.2014.08.006 doi: 10.1016/j.ijepes.2014.08.006
    [17] Z. Liu, T. Zhang, A second-order fuzzy time series model for stock price analysis, J. Appl. Stat., 46 (2019), 2514–2526. http://dx.doi.org/10.1080/02664763.2019.1601163 doi: 10.1080/02664763.2019.1601163
    [18] R. M. Pattanayak, S. Panigrahi, H. S. Behera, High-order fuzzy time series forecasting by using membership values along with data and support vector machine, Arab. J. Sci. Eng., 45 (2020), 10311–10325. http://dx.doi.org/10.1007/s13369-020-04721-1 doi: 10.1007/s13369-020-04721-1
    [19] K. Pearson, On lines and planes of closest fit to systems of points in space, Philos. Mag., 2 (1901), 559–572.
    [20] N. H. A. Rahman, M. H. Lee, Suhartono, M. T. Latif, Artificial neural networks and fuzzy time series forecasting: an application to air quality, Qual. Quant., 49 (2015), 2633–2647. http://dx.doi.org/10.1007/s11135-014-0132-6 doi: 10.1007/s11135-014-0132-6
    [21] P. Saxena, K. Sharma, S. Easo, Forecasting enrollments based on fuzzy time series with higher forecast accuracy rate, Int. J. Comput. Technol. Appl., 3 (2012), 957–961.
    [22] Q. Song, B. S. Chissom, Fuzzy time series and its models, Fuzzy Sets Syst., 54 (1993), 269–277. https://doi.org/10.1016/0165-0114(93)90372-O doi: 10.1016/0165-0114(93)90372-O
    [23] Q. Song, B. S. Chissom, Forecasting enrollments with fuzzy time series–part Ⅰ, Fuzzy Sets Syst., 54 (1993), 1–9. https://doi.org/10.1016/0165-0114(93)90355-L doi: 10.1016/0165-0114(93)90355-L
    [24] Q. Song, B. S. Chissom, Forecasting enrollments with fuzzy time series–part Ⅱ, Fuzzy Sets Syst., 62 (1994), 1–8. https://doi.org/10.1016/0165-0114(94)90067-1 doi: 10.1016/0165-0114(94)90067-1
    [25] B. Q. Sun, H. F. Guo, H. R. Karimi, Y. J. Ge, S. Xiong, Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series, Neurocomputing, 151 (2015), 1528–1536. http://dx.doi.org/10.1016/j.neucom.2014.09.018 doi: 10.1016/j.neucom.2014.09.018
    [26] N. Y. Wang, S. M. Chen, Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factors high-order fuzzy time series, Expert Syst. Appl., 36 (2009), 2143–2154. http://dx.doi.org/10.1016/j.eswa.2007.12.013 doi: 10.1016/j.eswa.2007.12.013
    [27] G. U. Yule, On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers, Philosophical Transactions of the Royal Society of London, Series A, London, 226 (1927), 267–298. https://doi.org/10.1098/rsta.1927.0007
    [28] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [29] R. Zarei, M. Gh. Akbari, J. Chachi, Modeling autoregressive fuzzy time series data based on semi-parametri cmethods, Soft. Comput., 24 (2020), 7295–7304. http://dx.doi.org/10.1007/s00500-019-04349-w doi: 10.1007/s00500-019-04349-w
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1358) PDF downloads(135) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog