A novel family of iterative schemes to estimate the solutions of nonlinear systems is presented. It is based on the Ermakov-Kalitkin procedure, which widens the set of converging initial estimations. This class is designed by means of a weight function technique, obtaining 6th-order convergence. The qualitative properties of the proposed class are analyzed by means of vectorial real dynamics. Using these tools, the most stable members of the family are selected, and also the chaotical elements are avoided. Some test vectorial functions are used in order to illustrate the performance and efficiency of the designed schemes.
Citation: Raudys R. Capdevila, Alicia Cordero, Juan R. Torregrosa. Convergence and dynamical study of a new sixth order convergence iterative scheme for solving nonlinear systems[J]. AIMS Mathematics, 2023, 8(6): 12751-12777. doi: 10.3934/math.2023642
A novel family of iterative schemes to estimate the solutions of nonlinear systems is presented. It is based on the Ermakov-Kalitkin procedure, which widens the set of converging initial estimations. This class is designed by means of a weight function technique, obtaining 6th-order convergence. The qualitative properties of the proposed class are analyzed by means of vectorial real dynamics. Using these tools, the most stable members of the family are selected, and also the chaotical elements are avoided. Some test vectorial functions are used in order to illustrate the performance and efficiency of the designed schemes.
[1] | R. H. Al-Obaidi, M. T. Darvishi, A comparative study on qualification criteria of nonlinear solvers with introducing some new ones, J. Math., 2022 (2022), 1–20. https://doi.org/10.1155/2022/4327913 doi: 10.1155/2022/4327913 |
[2] | S. Artidiello, A. Cordero, J. R. Torregrosa, M. P. Vassileva, Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure, Appl. Math. Comput., 268 (2015), 1064–1071. https://doi.org/10.1016/j.amc.2015.07.024 doi: 10.1016/j.amc.2015.07.024 |
[3] | R. Behl, I. K. Argyros, F. O. Mallawi, Some high-order convergent iterative procedures for nonlinear systems with local convergence, Mathematics, 9 (2021), 1–13. https://doi.org/10.3390/math9121375 doi: 10.3390/math9121375 |
[4] | R. Behl, S. Bhalla, A. A. Magreñán, S. Kumar, An efficient high order iterative scheme for large nonlinear systems with dynamics, J. Comput. Appl. Math., 404 (2022), 113249. https://doi.org/10.1016/j.cam.2020.113249 doi: 10.1016/j.cam.2020.113249 |
[5] | D. A. Budzko, A. Cordero, J. R. Torregrosa, New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations, Comput. Math. Math. Phys., 55 (2015), 1947–1959. https://doi.org/10.1134/S0965542515120040 doi: 10.1134/S0965542515120040 |
[6] | B. Campos, P. Vindel, Dynamics of subfamilies of Ostrowski-Chun methods, Math. Comput. Simul., 181 (2021), 57–81. https://doi.org/10.1016/j.matcom.2020.09.018 doi: 10.1016/j.matcom.2020.09.018 |
[7] | A. Cordero, I. Giménez-Palacios, J. R. Torregrosa, Avoiding strange attractors in efficient parametric families of iterative methods for solving nonlinear problems, Appl. Numer. Math., 137 (2019), 1–18. https://doi.org/10.1016/j.apnum.2018.12.006 doi: 10.1016/j.apnum.2018.12.006 |
[8] | A. Cordero, J. M. Gutiérrez, A. A. Magreñán, J. R. Torregrosa, Stability analysis of a parametric family of iterative methods for solving nonlinear models, Appl. Math. Comput., 285 (2016), 26–40. https://doi.org/10.1016/j.amc.2016.03.021 doi: 10.1016/j.amc.2016.03.021 |
[9] | A. Cordero, C. Jordán, E. Sanabria-Codesal, J. R. Torregrosa, Design, convergence and stability of a fourth-order class of iterative methods for solving nonlinear vectorial problems, Fractal Fract., 5 (2021), 1–16. https://doi.org/10.3390/fractalfract5030125 doi: 10.3390/fractalfract5030125 |
[10] | A. Cordero, J. G. Maimó, J. R. Torregrosa, M. P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families, J. Math. Chem., 53 (2015), 430–449. https://doi.org/10.1007/s10910-014-0432-z doi: 10.1007/s10910-014-0432-z |
[11] | A. Cordero, F. Soleymani, J. R. Torregrosa, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput., 244 (2014), 398–412. https://doi.org/10.1016/j.amc.2014.07.010 |
[12] | A. Cordero, J. R. Torregrosa, Variants of Newton's method using fifth-order quadrature formulas, Appl. Math. Comput., 190 (2007), 686–698. https://doi.org/10.1016/j.amc.2007.01.062 doi: 10.1016/j.amc.2007.01.062 |
[13] | A. Cordero, J. R. Torregrosa, On interpolation variants of Newton's method for functions of several variables, J. Comput. Appl. Math., 234 (2010), 34–43. https://doi.org/10.1016/j.cam.2009.12.002 doi: 10.1016/j.cam.2009.12.002 |
[14] | A. Cordero, J. R. Torregrosa, M. P. Vassileva, Pseudo-composition: a technique to design predictor-corrector methods for systems of nonlinear equations, Appl. Math. Comput., 218 (2012), 11496–11504. https://doi.org/10.1016/j.amc.2012.04.081 doi: 10.1016/j.amc.2012.04.081 |
[15] | A. Cordero, J. R. Torregrosa, M. P. Vassileva, Design, analysis, and applications of iterative methods for solving nonlinear systems, In: Nonlinear systems: design, analysis, estimation and control, Rijeka, Croatia: IntechOpen, 2016. |
[16] | V. V. Ermakov, N. N. Kalitkin, The optimal step and regularization for Newton's method, Comput. Math. Math. Phys., 21 (1981), 235–242. https://doi.org/10.1016/0041-5553(81)90022-7 doi: 10.1016/0041-5553(81)90022-7 |
[17] | M. Frontini, E. Sormani, Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. Math. Comput., 149 (2004), 771–782. https://doi.org/10.1016/S0096-3003(03)00178-4 doi: 10.1016/S0096-3003(03)00178-4 |
[18] | J. Gerlach, Accelerated convergence in Newton's method, SIAM Rev., 36 (1994), 272–276. https://doi.org/10.1137/1036057 doi: 10.1137/1036057 |
[19] | Y. H. Geum, Y. I. Kim, Á. A. Magreñán, A biparametric extension of King's fourth-order methods and their dynamics, Appl. Math. Comput., 282 (2016), 254–275. https://doi.org/10.1016/j.amc.2016.02.020 doi: 10.1016/j.amc.2016.02.020 |
[20] | S. P. He, H. Y. Fang, M. G. Zhang, F. Liu, Z. T. Ding, Adaptive optimal control for a class of nonlinear systems: the online policy iteration approach, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 549–558. https://doi.org/10.1109/TNNLS.2019.2905715 doi: 10.1109/TNNLS.2019.2905715 |
[21] | M. Kansal, A. Cordero, S. Bhalla, J. R. Torregrosa, New fourth- and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis, Numer. Algorithms, 87 (2021), 1017–1060. https://doi.org/10.1007/s11075-020-00997-4 doi: 10.1007/s11075-020-00997-4 |
[22] | J. M. Ortega, W. C. Rheinholdt, Iterative solution of nonlinear equations in several variables, Academic Press, 1970. |
[23] | A. M. Ostrowski, Solutions of equations and systems of equations, Academic Press, 1966. |
[24] | A. Y. Özban, Some new variants of Newton's method, Appl. Math. Lett., 17 (2004), 677–682. https://doi.org/10.1016/S0893-9659(04)90104-8 doi: 10.1016/S0893-9659(04)90104-8 |
[25] | R. Sharma, J. R. Sharma, N. Kalra, A modifed Newton-Özban composition for solving nonlinear systems, Int. J. Comput. Methods, 17 (2020), 1950047. https://doi.org/10.1142/S0219876219500476 doi: 10.1142/S0219876219500476 |
[26] | H. Singh, J. R. Sharma, S. Kumar, A simple yet efficient two-step fifth-order weighted-Newton method for nonlinear models, Numer. Algorithms, 2022. https://doi.org/10.1007/s11075-022-01412-w |
[27] | O. S. Solaiman, I. Hashim, An iterative scheme of arbitrary odd order and its basins of attraction for nonlinear systems, Comput. Mater. Contin., 66 (2021), 1427–1444. https://doi.org/10.32604/cmc.2020.012610 doi: 10.32604/cmc.2020.012610 |
[28] | A. Tijonov, A. Samarsky, Ecuaciones de la Física Matemática, Moscow: MIR, 1972. |
[29] | J. F. Traub, Iterative methods for the solution of equations, Englewood Cliffs: Prentice-Hall, 1964. |
[30] | X. F. Wang, T. Zhang, W. Y. Qian, M. Y. Teng, Seventh-order derivative-free iterative method for solving nonlinear systems, Numer. Algorithms, 70 (2015), 545–558. https://doi.org/10.1007/s11075-015-9960-2 doi: 10.1007/s11075-015-9960-2 |
[31] | S. Weerakoon, T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett., 13 (2000), 87–93. https://doi.org/10.1016/S0893-9659(00)00100-2 doi: 10.1016/S0893-9659(00)00100-2 |
[32] | X. Y. Xiao, H. W. Yin, Accelerating the convergence speed of iterative methods for solving nonlinear systems, Appl. Math. Comput., 333 (2018), 8–19. https://doi.org/10.1016/j.amc.2018.03.108 doi: 10.1016/j.amc.2018.03.108 |
[33] | T. Zhanlav, I. V. Puzynin, The convergence of iterations based on a continuous analogue of Newton's method, Comput. Math. Math. Phys., 32 (1992), 729–737. |
[34] | T. Zhanlav, C. Chun, K. Otgondorj, V. Ulziibayar, High-order iterations for systems of nonlinear equations, Int. J. Comput. Math., 97 (2020), 1704–1724. https://doi.org/10.1080/00207160.2019.1652739 doi: 10.1080/00207160.2019.1652739 |