This study shows the link between computer science and applied mathematics. It conducts a dynamics investigation of new root solvers using computer tools and develops a new family of single-step simple root-finding methods. The convergence order of the proposed family of iterative methods is two, according to the convergence analysis carried out using symbolic computation in the computer algebra system CAS-Maple 18. Without further evaluations of a given nonlinear function and its derivatives, a very rapid convergence rate is achieved, demonstrating the remarkable computing efficiency of the novel technique. To determine the simple roots of nonlinear equations, this paper discusses the dynamic analysis of one-parameter families using symbolic computation, computer animation, and multi-precision arithmetic. To choose the best parametric value used in iterative schemes, it implements the parametric and dynamical plane technique using CAS-MATLAB@R2011b. The dynamic evaluation of the methods is also presented utilizing basins of attraction to analyze their convergence behavior. Aside from visualizing iterative processes, this method illustrates not only iterative processes but also gives useful information regarding the convergence of the numerical scheme based on initial guessed values. Some nonlinear problems that arise in science and engineering are used to demonstrate the performance and efficiency of the newly developed method compared to the existing method in the literature.
Citation: Mudassir Shams, Nasreen Kausar, Serkan Araci, Liang Kong. On the stability analysis of numerical schemes for solving non-linear polynomials arises in engineering problems[J]. AIMS Mathematics, 2024, 9(4): 8885-8903. doi: 10.3934/math.2024433
[1] | Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624 |
[2] | Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen . Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750 |
[3] | Mouffak Benchohra, John R. Graef, Nassim Guerraiche, Samira Hamani . Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line. AIMS Mathematics, 2021, 6(6): 6278-6292. doi: 10.3934/math.2021368 |
[4] | Bashir Ahmad, Badrah Alghamdi, Ahmed Alsaedi, Sotiris K. Ntouyas . Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions. AIMS Mathematics, 2021, 6(7): 7093-7110. doi: 10.3934/math.2021416 |
[5] | Madeaha Alghanmi, Shahad Alqurayqiri . Existence results for a coupled system of nonlinear fractional functional differential equations with infinite delay and nonlocal integral boundary conditions. AIMS Mathematics, 2024, 9(6): 15040-15059. doi: 10.3934/math.2024729 |
[6] | Abdissalam Sarsenbi, Abdizhahan Sarsenbi . Boundary value problems for a second-order differential equation with involution in the second derivative and their solvability. AIMS Mathematics, 2023, 8(11): 26275-26289. doi: 10.3934/math.20231340 |
[7] | Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193 |
[8] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
[9] | Nayyar Mehmood, Niaz Ahmad . Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions. AIMS Mathematics, 2020, 5(1): 385-398. doi: 10.3934/math.2020026 |
[10] | Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632 |
This study shows the link between computer science and applied mathematics. It conducts a dynamics investigation of new root solvers using computer tools and develops a new family of single-step simple root-finding methods. The convergence order of the proposed family of iterative methods is two, according to the convergence analysis carried out using symbolic computation in the computer algebra system CAS-Maple 18. Without further evaluations of a given nonlinear function and its derivatives, a very rapid convergence rate is achieved, demonstrating the remarkable computing efficiency of the novel technique. To determine the simple roots of nonlinear equations, this paper discusses the dynamic analysis of one-parameter families using symbolic computation, computer animation, and multi-precision arithmetic. To choose the best parametric value used in iterative schemes, it implements the parametric and dynamical plane technique using CAS-MATLAB@R2011b. The dynamic evaluation of the methods is also presented utilizing basins of attraction to analyze their convergence behavior. Aside from visualizing iterative processes, this method illustrates not only iterative processes but also gives useful information regarding the convergence of the numerical scheme based on initial guessed values. Some nonlinear problems that arise in science and engineering are used to demonstrate the performance and efficiency of the newly developed method compared to the existing method in the literature.
The models of the differential and integral equations have been appeared in different applications (see [1,2,3,4,6,7,9,12,13,14,15,16,17,18,19,20]).
Boundary value problems involving fractional differential equations arise in physical sciences and applied mathematics. In some of these problems, subsidiary conditions are imposed locally. In some other cases, nonlocal conditions are imposed. It is sometimes better to impose nonlocal conditions since the measurements needed by a nonlocal condition may be more precise than the measurement given by a local condition. Consequently, a variety of excellent results on fractional boundary value problems (abbreviated BVPs) with resonant conditions have been achieved. For instance, Bai [4] studied a type of fractional differential equations with m-points boundary conditions. The existence of nontrivial solutions was established by using coincidence degree theory. Applying the same method, Kosmatov [17] investigated the fractional order three points BVP with resonant case.
Although the study of fractional BVPs at resonance has acquired fruitful achievements, it should be noted that such problems with Riemann-Stieltjes integrals are very scarce, so it is worthy of further explorations. Riemann-Stieltjes integral has been considered as both multipoint and integral in a single framework, which is more common, see the relevant works due to Ahmad et al. [1].
The boundary value problems with nonlocal, integral and infinite points boundary conditions have been studied by some authors (see, for example [8,10,11,12]).
Here, we discuss the boundary value problem of the nonlinear differential inclusions of arbitrary (fractional) orders
dxdt∈F1(t,x(t),Iγf2(t,Dαx(t))),α,γ∈(0,1]t∈(0,1) | (1.1) |
with the nonlocal boundary condition
m∑k=1akx(τk)=x0,ak>0τk∈[0,1], | (1.2) |
the integral condition
∫10x(s)dg(s)=x0 | (1.3) |
and the infinite point boundary condition
∞∑k=1akx(τk)=x0,ak>0andτk∈[0,1]. | (1.4) |
We study the existence of solutions x∈C[0,1] of the problems (1.1) and (1.2), and deduce the existence of solutions of the problem of (1.1) with the conditions (1.3) and (1.4). Then the existence of the maximal and minimal solutions will be proved. The sufficient condition for the uniqueness and continuous dependence of the solution will be studied.
This paper is organised as: In Section 2, we prove the existence of continuous solutions of the problems (1.1) and (1.2), and deduce the existence of solutions of the problem of (1.1) with the conditions (1.3) and (1.4). In Section 3, the existence of the maximal and minimal solutions is proved. In Section 4, the sufficient condition for the uniqueness and continuous dependence of the solution are studied. Next, in Section 5, we extend our results to the nonlocal problems (1.3) and (2.1). Finally, some existence results is proved for the nonlocal problems (1.4) and (2.1) in Section 6.
Consider the following assumptions:
(I) (i) The set F1(t,x,y) is nonempty, closed and convex for all (t,x,y)∈[0,1]×R×R.
(ii) F1(t,x,y) is measurable in t∈[0,1] for every x,y∈R.
(iii) F1(t,x,y) is upper semicontinuous in x and y for every t∈[0,1].
(iv) There exist a bounded measurable function a1:[0,1]⟶R and a positive constant K1, such that
‖F1(t,x,y)‖=sup{|f1|:f1∈F1(t,x,y)}≤|a1(t)|+K1(|x|+|y|). |
Remark 2.1. From the assumptions (i)–(iv) we can deduce that (see [3,6,7,13]) there exists f1∈F1(t,x,y), such that
(v) f1:[0,1]×R×R⟶R is measurable in t for every x,y∈R and continuous in x,y for t∈[0,1], and there exist a bounded measurable function a1:[0,1]→R and a positive constant K1>0 such that
|f1(t,x,y)|≤|a1(t)|+K1(|x|+|y|), |
and the functional f1 satisfies the differential equation
dxdt=f1(t,x(t),Iγf2(t,Dαx(t))),α,γ∈(0,1]andt∈(0,1]. | (2.1) |
(II) f2:[0,1]×R⟶R is measurable in t for any x∈R and continuous in x for t∈[0,1], and there exist a bounded measurable function a2:[0,1]→R and a positive constant K2>0 such that
|f2(t,x)|≤|a2(t)|+K2|x|,∀t∈[0,1]andx∈R |
and
supt∈[0,1]|ai(t)|≤ai,i=1,2. |
(III) 2K1γ+K1K2α<αγΓ(2−α),α,γ∈(0,1].
Remark 2.2. From (I) and (v) we can deduce that every solution of (1.1) is a solution of (2.1). Now, we shall prove the following lemma.
Lemma 2.1. If the solution of the problems (1.2)–(2.1) exists then it can be expressed by the integral equation
y(t)=∫t0(t−s)−αΓ(1−α)f1(s,1m∑k=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y(θ)dθ]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(ϕ,y(θ))dθ)ds. | (2.2) |
Proof. Consider the boundary value problems (1.2)–(2.1) be satisfied. Operating by I1−α on both sides of (2.1) we can obtain
Dαx(t)=I1−αdxdt=I1−αf1(t,x(t),Iγf2(t,Dαx(t))). | (2.3) |
Taking
Dαx(t)=y(t), | (2.4) |
then we obtain
x(t)=x(0)+Iαy(t). | (2.5) |
Putting t=τ and multiplying (2.5) by Σmk=1ak, then we get
Σmk=1akx(τk)=Σmk=1akx(0)+Σmk=1akIαy(τk), | (2.6) |
x0=Σmk=1akx(0)+Σmk=1akIαy(τk) | (2.7) |
and
x(0)=1Σmk=1ak[x0−Σmk=1akIαy(τk)]. | (2.8) |
Then
x(t)=1Σmk=1ak[x0−Σmk=1akIαy(τk)]+Iαy(t). | (2.9) |
Substituting (2.8) and (2.9) in (2.5), which completes the proof.
Theorem 2.1. Let assumptions (I)–(III) be satisfied. Then the integral equation (2.2) has at least one continuous solution.
Proof. Define a set Qr as
Qr={y∈C[0,1]:‖y‖≤r}, |
r=Γ(γ+1)[a1+K1A|x0|]+k1a2αγΓ(2−α)−[2K1α+K1K2γ],(m∑k=1ak)−1=A, |
and the operator F by
Fy(t)=∫t0(t−s)−αΓ(1−α)f1(s,1m∑k=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y(θ)dθ]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y(θ))dθ)ds. |
For y∈Qr, then
|Fy(t)|=|∫t0(t−s)−αΓ(1−α)f1(s,1m∑k=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y(θ)dθ]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y(θ))dθ)ds|≤K1∫t0(t−s)−αΓ(1−α)[|x0|m∑k=1ak+m∑k=1ak∫τk0(τk−θ)α−1Γ(α)|y(θ)|dθm∑k=1ak+∫s0(s−θ)α−1Γ(α)|y(θ)|dθ+∫s0(s−ϕ)γ−1Γ(γ)(K2|y(θ)|+|a2(t)|)dθ]+|a1(t)|)ds≤1Γ(2−α)[K1A|x0|+K1‖y‖Γ(α+1)+K1‖y‖Γ(α+1)+K1K2‖y‖Γ(γ+1)+K1a2Γ(γ+1)+a1]≤1Γ(2−α)[K1A|x0|+K1rΓ(α+1)+K1rΓ(α+1)+K1K2rΓ(γ+1)+K1a2Γ(γ+1)+a1]≤1Γ(2−α)[K1A|x0|+2K1rΓ(α+1)+K1K2rΓ(γ+1)+K1a2Γ(γ+1)+a1]≤r. |
Thus, the class of functions {Fy} is uniformly bounded on Qr and F:Qr→Qr. Let y∈Qr and t1,t2∈[0,1] such that |t2−t1|<δ, then
|Fy(t2)−Fy(t1)|=|∫t20(t2−s)−αΓ(1−α)(f1(s,x(s),Iγf2(s,y(s)))ds−∫t10(t1−s)−αΓ(1−α)(f1(s,x(s),Iγf2(s,y(s)))ds|≤|∫t20(t2−s)−αΓ(1−α)(f1(s,x(s),Iγf2(s,y(s)))ds−∫t10(t2−s)−αΓ(1−α)(f1(s,x(s),Iγf2(s,y(s)))ds+∫t10(t2−s)−αΓ(1−α)(f1(s,x(s),Iγf2(s,y(s)))ds−∫t10(t1−s)−αΓ(1−α)(f1(s,x(s),Iγf2(s,y(s)))ds|≤∫t2t1(t2−s)−αΓ(1−α)|(f1(s,x(s),Iγf2(s,y(s)))|ds+∫t10(t2−s)−α−(t1−s)−αΓ(1−α)|(f1(s,x(s),Iγf2(s,y(s)))ds|≤∫t2t1(t2−s)−αΓ(1−α)|(f1(s,x(s),Iγf2(s,y(s)))|ds+∫t10(t2−s)α−(t1−s)αΓ(1−α)(t2−s)α(t1−s)α.|(f1(s,x(s),Iγf2(s,y(s)))|ds. |
Thus, the class of functions {Fy} is equicontinuous on Qr and {Fy} is compact operator by the Arzela-Ascoli Theorem [5].
Now we prove that F is continuous operator. Let yn⊂Qr be convergent sequence such that yn→y, then
Fyn(t)=∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yn(θ)dθ]+∫s0(s−θ)α−1Γ(α)yn(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,yn(θ)))ds. |
Using Lebesgue dominated convergence Theorem [5] and assumptions (iv)–(II) we have
limn→∞Fyn(t)=limn→∞∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yn(θ)dθ]+∫s0(s−θ)α−1Γ(α)yn(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,yn(θ)))ds=∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)limn→∞yn(θ)dθ]+∫s0(s−θ)α−1Γ(α)limn→∞yn(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,limn→∞yn(θ)))ds=∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y(θ)dθ]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y(θ)))ds=Fy(t). |
Then F:Qr→Qr is continuous, and by Schauder Fixed Point Theorem[5] there exists at least one solution y∈C[0,1] of (2.2). Now
dxdt=ddt[x(0)+Iαy(t)]=ddtIαI1−αf1(t,x(t),Iγf2(t,y(t)))=ddtIf1(t,x(t),Iγf2(t,y(t)))=f1(t,x(t),Iγf2(t,y(t))). |
Putting t=τ and using (2.9), we obtain
x(t)=1Σmk=1ak[x0−Σmk=1akIαy(τk)]+Iαy(t),Σmk=1akx(τk)=Σmk=1ak1Σmk=1ak[x0−Σmk=1akIαy(τk)]+Σmk=1akIαy(τk), |
then
Σmk=1akx(τk)=x0,ak>0andτk∈[0,1]. |
This proves the equivalence between the problems (1.2)–(2.1) and the integral equation (2.2). Then there exists at least one solution y∈C[0,1] of the problems (1.2)–(2.1).
Here, we shall study the maximal and minimal solutions for the problems (1.2) and (2.1). Let y(t) be any solution of (2.2), let u(t) be a solution of (2.2), then u(t) is said to be a maximal solution of (2.2) if it satisfies the inequality
y(t)≤u(t),t∈[0,1]. |
A minimal solution can be defined by similar way by reversing the above inequality.
Lemma 3.1. Let the assumptions of Theorem 2.1 be satisfied. Assume that x(t) and y(t) are two continuous functions on [0,1] satisfying
y(t)≤∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y(θ)dθ]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y(θ)))dst∈[0,1],x(t)≥∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)x(θ)dθ]+∫s0(s−θ)α−1Γ(α)x(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,x(θ)))dst∈[0,1], |
where one of them is strict.
Let functions f1 and f2 be monotonic nondecreasing in y, then
y(t)<x(t),t>0. | (3.1) |
Proof. Let the conclusion (3.1) be not true, then there exists t1 with
y(t1)<x(t1),t1>0andy(t)<x(t),0<t<t1. |
Since f1 and f2 are monotonic functions in y, then we have
y(t1)≤∫t10(t1−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y(θ)dθ]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y(θ)))ds<∫t10(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)x(θ)dθ]+∫s0(s−θ)α−1Γ(α)x(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,x(θ)))ds<x(t1),t1∈[0,1]. |
This contradicts the fact that y(t1)=x(t1), then y(t)<x(t). This completes the proof.
For the existence of the continuous maximal and minimal solutions for (2.1), we have the following theorem.
Theorem 3.1. Let the assumptions of Theorem 2.1 be hold. Moreover, if f1 and f2 are monotonic nondecreasing functions in y for each t∈[0,1], then Eq (2.1) has maximal and minimal solutions.
Proof. First, we should demonstrate the existence of the maximal solution of (2.1). Let ϵ>0 be given. Now consider the integral equation
yϵ(t)=∫t0(t−s)−αΓ(1−α)f1,ϵ(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yϵ(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵ(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2,ϵ(θ,yϵ(θ))dθ)ds,t∈[0,1], |
where
f1,ϵ(s,xϵ(s),yϵ(s))=f1(s,xϵ(s),yϵ(s))+ϵ, |
f2,ϵ(s,xϵ(s))=f2(s,xϵ(s))+ϵ. |
For ϵ2>ϵ1, we have
yϵ2(t)=∫t0(t−s)−αΓ(1−α)f1,ϵ2(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yϵ2(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵ2(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2,ϵ2(θ,yϵ2(θ))dθ)ds,t∈[0,1], |
yϵ2(t)=∫t0(t−s)−αΓ(1−α)[f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yϵ2(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵ2(θ)dθ,∫s0(s−θ)γ−1Γ(γ)(f2(θ,yϵ2(θ))+ϵ2)dθ)+ϵ2]ds,t∈[0,1]. |
Also
yϵ1(t)=∫t0(t−s)−αΓ(1−α)f1,ϵ1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yϵ1(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵ1(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2,ϵ1(θ,yϵ1(θ))dθ)ds,yϵ1(t)=∫t0(t−s)−αΓ(1−α)[f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−ϕ)α−1Γ(α)yϵ1(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵ1(θ)dθ,∫s0(s−θ)γ−1Γ(γ)(f2(θ,yϵ1(θ))+ϵ1)dθ)+ϵ1]ds>∫t0(t−s)−αΓ(1−α)[f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yϵ2(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵ2(θ)dθ,∫s0(s−θ)γ−1Γ(γ)(f2(θ,yϵ2(τ))+ϵ2)dθ)+ϵ2]ds. |
Applying Lemma 3.1, we obtain
yϵ2<yϵ1,t∈[0,1]. |
As shown before, the family of function yϵ(t) is equi-continuous and uniformly bounded, then by Arzela Theorem, there exist decreasing sequence ϵn, such that ϵn→0 as n→∞, and u(t)=limn→∞yϵn(t) exists uniformly in [0,1] and denote this limit by u(t). From the continuity of the functions, f2,ϵn(t,yϵn(t)), we get f2,ϵn(t,yϵn(t))⟶f2(t,y(t)) as n→∞ and
u(t)=limn→∞yϵn(t)=∫t0(t−s)−αΓ(1−α)[f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yϵn(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵn(θ)dθ,∫s0(s−θ)γ−1Γ(γ)(f2(θ,yϵn(θ))+ϵn))+ϵn]ds,t∈[0,1]. |
Now we prove that u(t) is the maximal solution of (2.1). To do this, let y(t) be any solution of (2.1), then
y(t)=∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y(θ)dθ]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y(θ))dθ)ds,yϵ(t)=∫t0(t−s)−αΓ(1−α)[f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yϵ(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵ(θ)dθ,∫s0(s−θ)γ−1Γ(γ)(f2(θ,yϵ(θ))+ϵ)dθ)+ϵ]ds |
and
yϵ(t)>∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)yϵ(θ)dθ]+∫s0(s−θ)α−1Γ(α)yϵ(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,yϵ(θ)))ds. |
Applying Lemma 3.1, we obtain
y(t)<yϵ(t),t∈[0,1]. |
From the uniqueness of the maximal solution it clear that yϵ(t) tends to u(t) uniformly in [0,1] as ϵ→0.
By a similar way as done above, we can prove the existence of the minimal solution.
Here, we study the sufficient condition for the uniqueness of the solution y∈C[0,1] of problems (1.2) and (2.1). Consider the following assumptions:
(I∗) (i) The set F1(t,x,y) is nonempty, closed and convex for all (t,x,y)∈[0,1]×R×R.
(ii) F1(t,x,y) is measurable in t∈[0,1] for every x,y∈R.
(iii) F1 satisfies the Lipschitz condition with a positive constant K1 such that
H(F1(t,x1,y1),F1(t,x2,y2)|≤K1(|x1−x2|+|y1−y2|), |
where H(A,B) is the Hausdorff metric between the two subsets A,B∈[0,1]×E.
Remark 4.1. From this assumptions we can deduce that there exists a function f1∈F1(t,x,y), such that
(iv) f1:[0,1]×R×R→R is measurable in t∈[0,1] for every x,y∈R and satisfies Lipschitz condition with a positive constant K1 such that (see [3,7])
|f1(t,x1,y1)−f1(t,x2,y2)|≤K1(|x1−x2|+|y1−y2|). |
(II∗)f2:[0,1]×R⟶R is measurable in t∈[0,T] and satisfies Lipschitz condition with positive constant K2, such that
|f2(t,x)−f2(t,y)|≤K2|x−y|. |
From the assumption (I∗), we have
|f1(t,x,y)|−|f1(t,0,0)|≤|f1(t,x,y)−f1(t,0,0)|≤K1(|x|+|y|). |
Then
|f1(t,x,y)|≤K1(|x|+|y|)+|f1(t,0,0)|≤K1(|x|+|y|)+∣a1(t)∣, |
where |a1(t)|=supt∈I|f1(t,0,0)|.
From the assumption (II∗), we have
|f2(t,y)|−|f2(t,0)|≤|f2(t,y)−f2(t,0)|≤K2|y|. |
Then
|f2(t,x)|≤K2|x|+|f2(t,0)|≤K2|x|+∣a2(t)∣, |
where |a2(t)|=supt∈I|f1(t,0)|.
Theorem 4.1. Let the assumptions (I∗) and (II∗) be satisfied. Then the solution of the problems (1.2) and (2.1) is unique.
Proof. Let y1(t) and y2(t) be solutions of the problems (1.2) and (2.1), then
![]() |
Then
‖y1−y2‖[αγΓ(2−α)−(2K1α+K1K2γ)]<0. |
Since (αγΓ(2−α)−(2K1α+K1K2γ))<1, then y1(t)=y2(t) and the solution of (1.2) and (2.1) is unique.
Definition 4.1. The unique solution of the problems (1.2) and (2.1) depends continuously on initial data x0, if ϵ>0, ∃δ>0, such that
|x0−x∗0|≤δ⇒‖y−y∗‖≤ϵ, |
where y∗ is the unique solution of the integral equation
y∗(t)=∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x∗0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y∗(θ)dθ]+∫s0(s−θ)α−1Γ(α)y∗(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y∗(θ))dθ)ds|. |
Theorem 4.2. Let the assumptions (I∗) and (II∗) be satisfied, then the unique solution of (1.2) and (2.1) depends continuously on x0.
Proof. Let y(t) and y∗(t) be the solutions of problems (1.2) and (2.1), then
![]() |
then we obtain
|y(t)−y∗(t)|≤(AK1δ)(αγΓ(2−α)−(2K1α+K1K2γ))−1≤ϵ |
and
‖y(t)−y∗(t)‖≤ϵ. |
Definition 4.2. The unique solution of the problems (1.2) and (2.1) depends continuously on initial data ak, if ϵ>0, ∃δ>0, such that
m∑k=1|ak−a∗k|≤δ⇒‖y−y∗‖≤ϵ, |
where y∗ is the unique solution of the integral equation
y∗(t)=∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1a∗k∫τk0(τk−θ)α−1Γ(α)y∗(θ)dθ]+∫s0(s−θ)α−1Γ(α)y∗(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y∗(θ))dθ)ds|. |
Theorem 4.3. Let the assumptions (I∗) and (II∗) be satisfied, then the unique solution of problems (1.2) and (2.1) depends continuously on ak.
Proof. Let y(t) and y∗(t) be the solutions of problems (1.2) and (2.1) and (∑mk=1a∗k)−1=A∗,
|y(t)−y∗(t)|=|∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1ak[x0−m∑k=1ak∫τk0(τk−θ)α−1Γ(α)y(θ)dθ]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y(θ))dθ)ds−∫t0(t−s)−αΓ(1−α)f1(s,1∑mk=1a∗k[x0−m∑k=1a∗k∫τk0(τk−θ)α−1Γ(α)y∗(θ)dθ]+∫s0(s−θ)α−1Γ(α)y∗(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(θ,y∗(θ))dθ)ds|≤∫t0(t−s)−αΓ(1−α)[|x0|(∑mk=1a∗k−∑mk=1ak)∑mk=1ak∑mk=1a∗k+∑mk=1ak∫τk0(τk−θ)α−1Γ(α)|y(θ)|dθ∑mk=1ak−∑mk=1a∗k∫τk0(τk−θ)α−1Γ(α)|y∗(θ)|dθ∑mk=1a∗k+K1∫s0(s−θ)α−1Γ(α)|y(θ)−y∗(θ)|dθ+K1K2∫s0(s−θ)γ−1Γ(γ)|y(ϕ)−y∗(θ)|dθ]ds≤1Γ(2−α)[K1|x0|∑mk=1|a∗k−ak|∑mk=1ak∑mk=1a∗k+K1∑mk=1ak(∑mk=1a∗k∫τk0(τk−θ)α−1Γ(α)|y(θ)|dθ−∑mk=1ak∫τk0(τk−θ)α−1Γ(α)|y(θ)|dθ)∑mk=1ak∑mk=1a∗k+K1∑mk=1a∗k(∑mk=1ak∫τk0(τk−θ)α−1Γ(α)|y(θ)|dθ−∑mk=1a∗k∫τk0(τk−θ)α−1Γ(α)|y(θ)|dθ)∑mk=1ak∑mk=1a∗k+K1∫s0(s−θ)α−1Γ(α)|y(θ)−y∗(θ)|dθ+K1K2∫s0(s−θ)γ−1Γ(γ)|y(ϕ)−y∗(θ)|dθ]ds≤1Γ(2−α)[K1|x0|δ∑mk=1ak∑mk=1a∗k+K1(∑mk=1akδrΓ(α+1)+∑mk=1a∗kδrΓ(α+1))∑mk=1ak∑mk=1a∗k+K1‖y−y∗‖Γ(α+1)+K1K2‖y−y∗‖Γ(γ+1)≤K1δ|x0|Γ(2−α)∑mk=1ak∑mk=1a∗k+K1(∑mk=1akδrΓ(α+1)+∑mk=1a∗kδrΓ(α+1))Γ(2−α)Γ(α+1)∑mk=1ak∑mk=1a∗k+K1‖y−y∗‖Γ(2−α)Γ(α+1)+K1K2‖y−y∗‖Γ(γ+1)Γ(2−α), |
then we obtain
|y(t)−y∗(t)|≤(AA∗K1δ[|x0|+r(m∑k=1ak+m∑k=1a∗k)]).(αγΓ(2−α)−(2K1α+K1K2γ))−1≤ϵ |
and
‖y(t)−y∗(t)‖≤ϵ. |
Let y∈C[0,1] be the solution of the nonlocal boundary value problems (1.2) and (2.1). Let ak=(g(tk)−g(tk−1), g is increasing function, τk∈(tk−1−tk), 0=t0<t1<t2,...<tm=1, then, as m⟶∞ the nonlocal condition (1.2) will be
m∑k=1(g(tk)−g(tk−1)y(τk)=x0. |
As the limit m⟶∞, we obtain
limm→∞m∑k=1(g(tk)−g(tk−1)y(τk)=∫10y(s)dg(s)=x0. |
Theorem 5.1. Let the assumptions (I)–(III) be satisfied. If ∑mk=1ak be convergent, then the nonlocal boundary value problems of (1.3) and (2.1) have at least one solution given by
y(t)=∫t0(t−s)−αΓ(1−α)f1(s,1g(1)−g(0)[x0−∫10∫s0(s−θ)α−1Γ(α)y(θ)dθdg(s)]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(ϕ,y(θ))dθ)ds. |
Proof. As m→∞, the solution of the nonlocal boundary value problem (2.1) will be
limm→∞y(t)=∫t0(t−s)−αΓ(1−α)f1(s,(g(1)−g(0))−1x0−(g(1)−g(0))−1.limm→∞m∑k=1[g(tk)−g(tk−1]∫τk0(τk−θ)α−1Γ(α)y(θ)dθ+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(ϕ,y(θ))dθ)ds=∫t0(t−s)−αΓ(1−α)f1(s,1g(1)−g(0)[x0−∫10∫s0(s−θ)α−1Γ(α)y(θ)dθdg(s)]+∫s0(s−θ)α−1Γ(α)y(θ)dθ,∫s0(s−θ)γ−1Γ(γ)f2(ϕ,y(θ))dθ)ds. |
Theorem 6.1. Let the assumptions (I)–(III) be satisfied, then the nonlocal boundary value problems of (1.4) and (2.1) have at least one solution given by
\begin{eqnarray} y(t)& = &\int_{0}^{t}\frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s,\frac{1}{\sum\nolimits^{\infty}_{k = 1}a_{k}}[x_{0}-\sum\limits^{\infty}_{k = 1}a_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-\theta)^{\alpha-1}} {\Gamma(\alpha)}y(\theta)d\theta]\\ &&+\int_{0}^{s}\frac{(s-\theta)^{\alpha-1}}{\Gamma(\alpha)}y(\theta)d\theta,\int_{0}^{s}\frac{(s-\theta)^{\gamma-1}}{\Gamma(\gamma)} f_{2}(\phi,y(\theta))d\theta)ds. \end{eqnarray} |
Proof. Let the assumptions of Theorem 2.1 be satisfied. Let \sum\nolimits^{m}_{k = 1} a_{k} be convergent, then take the limit to (1.4), we have
\begin{eqnarray} \lim\limits_{m\rightarrow \infty}y(t)& = &\int_{0}^{t}\frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s,\lim\limits_{m\rightarrow m}\frac{1}{\sum\nolimits^{m}_{k = 1}a_{k}}[x_{0}-\lim\limits_{m\rightarrow \infty}\sum\limits^{m}_{k = 1}a_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-\theta)^{\alpha-1}}{\Gamma(\alpha)}y(\theta)d\theta]\\ &&+\int_{0}^{s}\frac{(s-\theta)^{\alpha-1}}{\Gamma(\alpha)}y(\theta)d\theta,\int_{0}^{s}\frac{(s-\theta)^{\gamma-1}}{\Gamma(\gamma)}f_{2}(\phi,y(\theta))d\theta)ds. \end{eqnarray} |
Now
\begin{eqnarray*} |a_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-\theta)^{\alpha-1}}{\Gamma(\alpha)}y(\theta)d\theta| \leq|a_{k}|\int_{0}^{\tau_{k}}\frac{(\tau_{k}-\theta)^{\alpha-1}}{\Gamma(\alpha)}|y(\theta)|d\theta\leq\frac{|a_{k}|\|y\|}{\Gamma(\alpha+1)} \leq\frac{|a_{k}|r}{\Gamma(\alpha+1)} \end{eqnarray*} |
and by the comparison test (\sum\nolimits^{m}_{k = 1}a_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-\theta)^{\alpha-1}}{\Gamma(\alpha)}y(\theta)d\theta) is convergent,
\begin{eqnarray*} y(t)& = &\int_{0}^{t}\frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s,\frac{1}{\sum\nolimits^{\infty}_{k = 1}a_{k}}[x_{0}-\sum\limits^{\infty}_{k = 1}a_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-\theta)^{\alpha-1}}{\Gamma(\alpha)}y(\theta)d\theta]\nonumber\\ &&+\int_{0}^{s}\frac{(s-\theta)^{\alpha-1}}{\Gamma(\alpha)}y(\theta)d\theta,\int_{0}^{s}\frac{(s-\theta)^{\gamma-1}}{\Gamma(\gamma)}f_{2}(\phi,y(\theta))d\theta)ds.\nonumber \end{eqnarray*} |
Furthermore, from (2.9) we have
\begin{eqnarray*} \sum\limits^{\infty}_{k = 1}a_{k}x(\tau_{k})& = &\sum\limits^{\infty}_{k = 1}a_{k}[\frac{1}{\sum\nolimits^{\infty}_{k = 1}a_{k}}(x_{0}-\sum\limits^{\infty}_{k = 1}a_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}y(s)ds)]\\ &&+\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}y(s)ds)]\\ & = &x_{0}. \end{eqnarray*} |
Example 6.1. Consider the following nonlinear integro-differential equation
\begin{equation} \frac{dx}{dt} = t^{4}e^{-t}+\frac{x(t)}{\sqrt{t+2}}+\frac{1}{3}I^{\gamma}(\cos(5t+1)+\frac{1}{9}[t^{5}\sin D^{\frac{1}{3}}x(t)+e^{-3t}x(t)]) \end{equation} | (6.1) |
with boundary condition
\begin{equation} {\sum\limits^{m}_{k = 1}\bigg[\frac{1}{k}-\frac{1}{k+1}\bigg]} x(\tau_k ) = x_{0},\; a_{k} > 0\; \; \tau_{k}\in[0,1]. \end{equation} | (6.2) |
Let
\begin{eqnarray*} f_{1}(t,x(t),I^{\gamma}f_{2}(t,D^{\alpha}x(t))) = t^{4}e^{-t}+\frac{x(t)}{\sqrt{t+2}}+\frac{1}{3}I^{\gamma}(\cos(5t+1)+\frac{1}{9}[t^{5}\sin D^{\frac{1}{3}}x(t)+e^{-3t}x(t)]), \end{eqnarray*} |
then
\begin{eqnarray*} |f_{1}(t,x(t),I^{\gamma}f_{2}(t,D^{\alpha}x(t))) = |t^{4}e^{-t}+\frac{x(t)}{\sqrt{2t+4}}+\\ \frac{1}{4}(\frac{4}{3}I^{\gamma}(\cos(5t+1)+\frac{1}{9}[t^{5}\sin D^{\frac{1}{3}}x(t)+e^{-3t}x(t)]))| \end{eqnarray*} |
and also
\begin{eqnarray*} &&|I^{\gamma}f_{2}(t,D^{\alpha}x(t))|\leq \frac{1}{4}(\frac{4}{3}I^{\gamma}|\cos(5t+1)+\frac{1}{3}[t^{5}\sin D^{\frac{1}{3}}x(t)+e^{-3t}x(t)]|. \end{eqnarray*} |
It is clear that the assumptions (I) and (II) of Theorem 2.1 are satisfied with a_{1}(t) = t^{4}e^{-t}\in L^{1}[0, 1] , a_{2}(t) = \frac{4}{3}I^{\gamma}|(\cos(5t+1)|\in L^{1}[0, 1] , and let \alpha = \frac{1}{3} , \gamma = \frac{2}{3} , then 2K_{1}\gamma+K_{1}K_{2}\alpha = \frac{1}{2} < \alpha\gamma\Gamma(2-\alpha) = \frac{1}{2}\Gamma(2-\alpha) . Therefore, by applying Theorem 2.1, the nonlocal problems (6.1) and (6.2) has a continuous solution.
In this paper, we have studied a boundary value problem of fractional order differential inclusion with nonlocal, integral and infinite points boundary conditions. We have prove some existence results for that a single nonlocal boundary value problem, in of proving some existence results for a boundary value problem of fractional order differential inclusion with nonlocal, integral and infinite points boundary conditions. Next, we have proved the existence of maximal and minimal solutions. Then we have established the sufficient conditions for the uniqueness of solutions and continuous dependence of solution on some initial data and on the coefficients a_k are studied. Finally, we have proved the existence of a nonlocal boundary value problem with Riemann-Stieltjes integral condition and with infinite-point boundary condition. An example is given to illustrate our results.
The authors declare no conflict of interest.
[1] |
M. Cosnard, P. Fraigniaud, Finding the roots of a polynomial on an MIMD multicomputer, Parall. Comput., 15 (1990), 75–85. https://doi.org/10.1016/0167-8191(90)90032-5 doi: 10.1016/0167-8191(90)90032-5
![]() |
[2] |
X. Lü, H. Hui, F. Liu, Y. Bai, Stability and optimal control strategies for a novel epidemic model of COVID-19, Nonlinear Dyn., 106 (2021), 1491–1507. https://doi.org/10.1007/s11071-021-06524-x doi: 10.1007/s11071-021-06524-x
![]() |
[3] |
A. Naseem, M. Rehman, T. Abdeljawad, Computational methods for non-linear equations with some real-world applications and their graphical analysis, Intell. Autom. Soft Comput., 30 (2021), 805–819. http://dx.doi.org/10.32604/iasc.2021.019164 doi: 10.32604/iasc.2021.019164
![]() |
[4] |
B. Liu, X. E. Zhang, B. Wang, X. Lü, Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential, Mod. Phys. Lett. B, 36 (2022), 2250057. https://doi.org/10.1142/S0217984922500579 doi: 10.1142/S0217984922500579
![]() |
[5] | O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comput., 27 (1973), 339–344. |
[6] |
S. M. Kang, A. Rafiq, S. Ahmad, Y. C. Kwun, New iterative method with higher-order convergence for scalar equations, Int. J. Math. Anal., 10 (2016), 339–356. http://dx.doi.org/10.12988/ijma.2016.612 doi: 10.12988/ijma.2016.612
![]() |
[7] |
O. S. Solaiman, I. Hashim, Optimal eighth-order solver for nonlinear equations with applications in chemical engineering, Intell. Autom. Soft Comput., 27 (2021), 379–390. http://dx.doi.org/10.32604/iasc.2021.015285 doi: 10.32604/iasc.2021.015285
![]() |
[8] |
H. T. Kung, J. F. Traub, Optimal order of one-point and multipoint iteration, J. ACM, 21 (1974), 643–651. https://doi.org/10.1145/321850.321860 doi: 10.1145/321850.321860
![]() |
[9] |
M. Shams, N. Rafiq, N. Kausar, P. Agarwal, C. Park, S. Momani, Efficient iterative methods for finding simultaneously all the multiple roots of polynomial equation, Adv. Differ. Equ., 2021 (2021), 495. https://doi.org/10.1186/s13662-021-03649-6 doi: 10.1186/s13662-021-03649-6
![]() |
[10] |
S. A. Sariman, I. Hashim, New optimal Newton-Householder methods for solving nonlinear equations and their dynamics, Comput. Mater. Contin., 65 (2020), 69–85. http://dx.doi.org/10.32604/cmc.2020.010836 doi: 10.32604/cmc.2020.010836
![]() |
[11] |
M. A. Noor, K. I. Noor, W. A. Khan, F. Ahmad, On iterative methods for nonlinear equations, Appl. Math. Comput., 183 (2006), 128–133. http://dx.doi.org/10.1016/j.amc.2006.05.054 doi: 10.1016/j.amc.2006.05.054
![]() |
[12] |
O. Bazighifan, P. Kumam, Oscillation theorems for advanced differential equations with p-Laplacian like operators, Mathematics, 8 (2020), 821. https://doi.org/10.3390/math8050821 doi: 10.3390/math8050821
![]() |
[13] |
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Oscillatory behavior of fourth-order differential equations with neutral delay, Symmetry, 12 (2020), 371. https://doi.org/10.3390/sym12030371 doi: 10.3390/sym12030371
![]() |
[14] |
O. Bazighifan, H. Alotaibi, A. A. A. Mousa, Neutral delay differential equations: Oscillation conditions for the solutions, Symmetry, 13 (2021), 101. https://doi.org/10.3390/sym13010101 doi: 10.3390/sym13010101
![]() |
[15] |
R. A. El-Nabulsi, O. Moaaz, O. Bazighifan, New results for oscillatory behavior of fourth-order differential equations, Symmetry, 12 (2020), 136. https://doi.org/10.3390/sym12010136 doi: 10.3390/sym12010136
![]() |
[16] |
O. Moaaz, D. Chalishajar, O. Bazighifan, Some qualitative behavior of solutions of general class of difference equations, Mathematics, 7 (2019), 585. https://doi.org/10.3390/math7070585 doi: 10.3390/math7070585
![]() |
[17] |
D. A. Knoll, E. K. David, Jacobian-free Newton-Krylova methods: A survey of approaches and applications, J. Comput. Phy., 193 (2004), 357–397. https://doi.org/10.1016/j.jcp.2003.08.010 doi: 10.1016/j.jcp.2003.08.010
![]() |
[18] |
J. F. Lemieux, B. Tremblay, J. Sedláček, P. Tupper, S. Thomas, D. Huard, et al., Improving the numerical convergence of viscous-plastic sea ice models with the Jacobian-free Newton-Krylova method, J. Comput. Phy., 229 (2010), 2840–2852. https://doi.org/10.1016/j.jcp.2009.12.011 doi: 10.1016/j.jcp.2009.12.011
![]() |
[19] |
X. Y. Wu, A new continuation Newton-like method and its deformation, Appl. Math. Comput., 112 (2000), 75–78. https://doi.org/10.1016/S0096-3003(99)00049-1 doi: 10.1016/S0096-3003(99)00049-1
![]() |
[20] | U. K. Qureshi, Z. A. Kalhoro, A. A. Shaikh, A. R. Nangraj, Trapezoidal second order convergence method for solving nonlinear problems, USJICT, 2 (2018), 111–114. |
[21] |
J. H. He, Variational iteration method-some recent results and new interpretations, J. Comput. Appl. Math., 207 (2007), 3–17. https://doi.org/10.1016/j.cam.2006.07.009 doi: 10.1016/j.cam.2006.07.009
![]() |
[22] |
B. Saheya, G. Q. Chen, Y. K. Sui, C. Y. Wu, A new Newton-like method for solving nonlinear equations, SpringerPlus, 5 (2016), 1269. https://doi.org/10.1186/s40064-016-2909-7 doi: 10.1186/s40064-016-2909-7
![]() |
[23] |
S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations by modified Adomian de composition method, Appl. Math. Comput., 145 (2003), 887–893. https://doi.org/10.1016/S0096-3003(03)00282-0 doi: 10.1016/S0096-3003(03)00282-0
![]() |
[24] | G. M. Sandquist, Z. R. Wilde, Introduction to System Science with MATLAB, Hoboken: John Wiley and Sons, 2023. |
[25] |
A. Sohail, Genetic algorithms in the fields of artificial intelligence and data sciences, Ann. Data Sci., 10 (2023), 1007–1018. https://doi.org/10.1007/s40745-021-00354-9 doi: 10.1007/s40745-021-00354-9
![]() |
[26] |
A. Y. Özban, Some new variants of Newton's method, Appl. Math. Lett., 17 (2004), 677–682. https://doi.org/10.1016/S0893-9659(04)90104-8 doi: 10.1016/S0893-9659(04)90104-8
![]() |
[27] |
J. Kou, Y. Li, A family of new Newton-like method, Appl. Math. Comput., 192 (2007), 162–167. https://doi.org/10.1016/j.amc.2007.02.129 doi: 10.1016/j.amc.2007.02.129
![]() |
[28] |
F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, Generating root-finder iterative methods of second order convergence and stability, Axioms, 8 (2019), 55. https://doi.org/10.3390/axioms8020055 doi: 10.3390/axioms8020055
![]() |
[29] |
A. Cordero, J. R. Torregrosa, Variants of Newton's method using fifth order quadrature formulas, Appl. Math. Comput., 190 (2007), 686–698. https://doi.org/10.1016/j.amc.2007.01.062 doi: 10.1016/j.amc.2007.01.062
![]() |
[30] |
J. Gerlach, Accelerated convergence in Newton's method, SIAM Review, 36 (1994), 272–276. https://doi.org/10.1137/1036057 doi: 10.1137/1036057
![]() |
[31] |
I. Gościniak, K. Gdawiec, Visual analysis of dynamics behavior of an iterative method depending on selected parameters and modifications, Entropy, 1 (2020), 737. https://doi.org/10.3390/e22070734 doi: 10.3390/e22070734
![]() |
[32] |
S. A. Siddiqui, A. Ahmad, Implementation of Newton's algorithm using FORTRAN, SN Comput. Sci., 1 (2020), 348. https://doi.org/10.1007/s42979-020-00360-3 doi: 10.1007/s42979-020-00360-3
![]() |
[33] |
M. Shams, N. Rafiq, N. Kausar, N. A. Mir, A. Alalyani, Computer oriented numerical scheme for solving engineering problems, Comput. Syst. Sci. Eng., 42 (2022), 689–701. http://dx.doi.org/10.32604/csse.2022.022269 doi: 10.32604/csse.2022.022269
![]() |
[34] |
S. Amat, S. Busquier, S. Plaza, Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl., 336 (2010), 24–32. https://doi.org/10.1016/j.jmaa.2010.01.047 doi: 10.1016/j.jmaa.2010.01.047
![]() |
[35] | P. Fatou, Sur les equations fonctionnelles, Bull. Soc. Mat. France, 47 (1919), 161–271. |
[36] |
J. F. Traub, Computational complexity of iterative processes, SIAM J. Comput., 1 (1972), 167–179. https://doi.org/10.1137/0201012 doi: 10.1137/0201012
![]() |
[37] |
S. Kumar, J. Bhagwan, L. Jäntschi, Numerical simulation of multiple roots of van der Waals and CSTR problems with a derivative-free technique, AIMS Math., 8 (2023), 14288–14299. http://dx.doi.org/10.3934/math.2023731 doi: 10.3934/math.2023731
![]() |
[38] |
G. Thangkhenpau, S. Panday, L. C. Bolunduţ, L. Jäntschi, Efficient families of multi-point iterative methods and their self-acceleration with memory for solving nonlinear equations, Symmetry, 15 (2023), 1546. https://doi.org/10.3390/sym15081546 doi: 10.3390/sym15081546
![]() |
[39] |
E. Sharma, S. Panday, S. K. Mittal, D. M. Joița, L. L. Pruteanu, L. Jäntschi, Derivative-free families of with-and without-memory iterative methods for solving nonlinear equations and their engineering applications, Mathematics, 11 (2023), 4512. https://doi.org/10.3390/math11214512 doi: 10.3390/math11214512
![]() |
[40] |
S. Kumar, J. R. Sharma, J. Bhagwan, L. Jäntschi, Numerical solution of nonlinear problems with multiple roots using derivative-free algorithms, Symmetry, 15 (2023), 1249. https://doi.org/10.3390/sym15061249 doi: 10.3390/sym15061249
![]() |
[41] | R. L. Burden, J. D. Faires, Boundary-value problems for ordinary differential equations, In: Numerical Analysis, 9^th edition, Boston: Belmount Thomson Brooks/Cole Press, 2011. |
[42] |
V. K. Srivastav, S. Thota, M. Kumar, A new trigonometrical algorithm for computing real root of non-linear transcendental equations, Int. J. Appl. Comput. Math., 5 (2019), 44. https://doi.org/10.1007/s40819-019-0600-8 doi: 10.1007/s40819-019-0600-8
![]() |
[43] |
M. I. Argyros, I. K. Argyros, S. Regmi, S. George, Generalized three step numerical methods for solving equations in Banach spaces, Mathematics, 10 (2022), 2621. https://doi.org/10.3390/math10152621 doi: 10.3390/math10152621
![]() |
[44] |
T. Lei, R. M. Y. Li, H. Fu, Dynamics analysis and fractional-order approximate entropy of inventory management nonlinear systems, Math. Prob. Eng., 2021 (2021), 5516703. https://doi.org/10.1155/2021/5516703 doi: 10.1155/2021/5516703
![]() |
[45] |
W. Li, L. Weng, K. Zhao, S. Zhao, P. Zhang, Research on the evaluation of real estate inventory management in China, Land, 10 (2021), 1283. https://doi.org/10.3390/land10121283 doi: 10.3390/land10121283
![]() |
[46] |
H. Ran, Construction and optimization of inventory management system via cloud-edge collaborative computing in supply chain environment in the Internet of Things era, Plos One, 16 (2021), e0259284. https://doi.org/10.1371/journal.pone.0259284 doi: 10.1371/journal.pone.0259284
![]() |