Research article

Stochastic comparisons of second-order statistics from dependent and heterogeneous modified proportional (reversed) hazard rates scale models

  • Received: 02 November 2023 Revised: 21 February 2024 Accepted: 22 February 2024 Published: 04 March 2024
  • MSC : Primary 90B25, Secondary 60E15, 60K10

  • In this paper, we investigate the problem of stochastically comparing the second-order statistics from dependent and heterogeneous samples following modified proportional hazard rates scale (MPHRS) and modified proportional reversed hazard rates scale (MPRHRS) models under Archimedean copula. We built some sufficient conditions for the usual stochastic order whenever the samples have different parameter vectors. Finally, some numerical examples were provided to illustrate the theoretical results.

    Citation: Bin Lu. Stochastic comparisons of second-order statistics from dependent and heterogeneous modified proportional (reversed) hazard rates scale models[J]. AIMS Mathematics, 2024, 9(4): 8904-8919. doi: 10.3934/math.2024434

    Related Papers:

  • In this paper, we investigate the problem of stochastically comparing the second-order statistics from dependent and heterogeneous samples following modified proportional hazard rates scale (MPHRS) and modified proportional reversed hazard rates scale (MPRHRS) models under Archimedean copula. We built some sufficient conditions for the usual stochastic order whenever the samples have different parameter vectors. Finally, some numerical examples were provided to illustrate the theoretical results.



    加载中


    [1] R. Fang, X. H. Li, Advertising a second-price auction, J. Math. Econ., 61 (2015), 246–252. https://doi.org/10.1016/j.jmateco.2015.04.003 doi: 10.1016/j.jmateco.2015.04.003
    [2] G. Pledger, F. Proschan, Comparisons of order statistics and of spacings from heterogeneous distributions, In: Rustagi js, editor, Optimizing Methods in Statstics, New York: Academic Press, 1971, 89–113.
    [3] P. Zhao, N. Balakrishnan, New results on comparisons of parallel systems with heterogeneous gamma components, Stat. Prob. Lett., 81 (2011), 36–44. https://doi.org/10.1016/j.spl.2010.09.016 doi: 10.1016/j.spl.2010.09.016
    [4] R. F. Yan, G. F. Da, P. Zhao, Further results for parallel systems with two heterogeneous exponential components, Statistics, 47 (2013), 1128–1140. https://doi.org/10.1080/02331888.2012.704632 doi: 10.1080/02331888.2012.704632
    [5] R. Fang, C. Li, X. H. Li, Ordering results on extremes of scaled random variables with dependence and proportional hazards, Statistics, 52 (2018), 458–478. https://doi.org/10.1080/02331888.2018.1425998 doi: 10.1080/02331888.2018.1425998
    [6] Y. Zhang, X. Cai, P. Zhao, H. R. Wang, Stochastic comparisons of parallel and series systems with heterogeneous resilience-scaled components, Statistics, 53 (2019), 126–147. https://doi.org/10.1080/02331888.2018.1546705 doi: 10.1080/02331888.2018.1546705
    [7] J. R. Wang, R. F. Yan, B. Lu, Stochastic comparisons of parallel and series systems with type Ⅱ half logistic-resilience scale components, Mathematics, 8 (2020), 470. https://doi.org/10.3390/math8040470 doi: 10.3390/math8040470
    [8] B. Y. Wang, R. Fang, Stochastic comparisons on extreme order statistics from observations associated by fgm copula, Commun. Stat.-Theor. M., 52 (2023), 3492–3510. https://doi.org/10.1080/03610926.2021.1974481 doi: 10.1080/03610926.2021.1974481
    [9] Q. Zheng, L. X. Fang, Y. Ding, Stochastic comparisons of the largest and smallest claim amounts with heterogeneous survival exponentiated location-scale distributed claim severities, Commun. Stat.-Theor. M., 2023, 1–19.
    [10] G. A. Parham, M, Abdolahi, R. Chinipardaz, Ordering results of the smallest order statistics from independent heterogeneous new modified generalized linear failure rate random variables, Commun. Stat.-Theor. M., 52 (2023), 5606–5639.
    [11] A. Paul, G. Gutierrez, Mean sample spacings, sample size and variability in an auction-theoretic framework, Oper. Res. Lett., 32 (2004), 103–108.
    [12] R. E. Barlow, F. Proschan, Mathematical theory of reliability, New York: Wiley, 1965.
    [13] E. Pǎltǎnea, On the comparison in hazard rate ordering of fail-safe systems, J. Stat. Plan. Infer., 138 (2008), 1993–1997.
    [14] P. Zhao, X. H. Li, N. Balakrishnan, Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables, J. Multivariate Anal., 100 (2009), 952–962. https://doi.org/10.1016/j.jmva.2008.09.010 doi: 10.1016/j.jmva.2008.09.010
    [15] P. Zhao, N.Balakrishnan, Characterization of mrl order of fail-safe systems with heterogeneous exponential components, J. Stat. Plan. Infer., 139 (2009), 3027–3037. https://doi.org/10.1016/j.jspi.2009.02.006 doi: 10.1016/j.jspi.2009.02.006
    [16] P. Zhao, N. Balakrishnan, Dispersive ordering of fail-safe systems with heterogeneous exponential components, Metrika, 74 (2011), 203–210. https://doi.org/10.1007/s00184-010-0297-5 doi: 10.1007/s00184-010-0297-5
    [17] N. Balakrishnan, A. Haidari, G. Barmalzan. Improved ordering results for fail-safe systems with exponential components, Commun. Stat.-Theor. M., 44 (2015), 2010–2023.
    [18] X. Cai, Y. Y. Zhang, P. Zhao, Hazard rate ordering of the second-order statistics from multiple-outlier phr samples, Statistics, 51 (2016), 1–12. https://doi.org/10.1080/02331888.2016.1265969 doi: 10.1080/02331888.2016.1265969
    [19] R. Fang, C. Li, X. H. Li, Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, 50 (2016), 930–955. https://doi.org/10.1080/02331888.2015.1119151 doi: 10.1080/02331888.2015.1119151
    [20] C. Li, R. Fang, X. H. Li, Stochastic somparisons of order statistics from scaled and interdependent random variables, Metrika, 79 (2016), 1–26. https://doi.org/10.1007/s00184-015-0567-3 doi: 10.1007/s00184-015-0567-3
    [21] T. Lando, I. Arab, P. E. Oliveira, Second-order stochastic comparisons of order statistics, Statistics, 55 (2021), 561–579. https://doi.org/10.1080/02331888.2021.1960527 doi: 10.1080/02331888.2021.1960527
    [22] S. Das, S. Kayal, Stochastic comparison of the second-order statistics arising from exponentiated location-scale model, Commun. Stat.-Theor. M., 2022, 1–29. https://doi.org/10.1080/03610926.2022.2134974 doi: 10.1080/03610926.2022.2134974
    [23] O. Shojaee, S. M. Mohammadi, R. Momeni, Ordering results for the smallest (largest) and the second smallest (second largest) order statistics of dependent and heterogeneous random variables, Metrika, 2023, 1–23. https://doi.org/10.1007/s00184-023-00917-1 doi: 10.1007/s00184-023-00917-1
    [24] R. F. Yan, J. L. Niu, Stochastic comparisons of second-order statistics from dependent and heterogenous modified proportional hazard rate observations, Statistics, 57 (2023), 328–353. https://doi.org/10.1080/02331888.2023.2177999 doi: 10.1080/02331888.2023.2177999
    [25] G. Barmalzan, N. K. Hazra, A. A. Hosseinzadeh, Ordering properties of the second smallest and the second largest order statistics from a general semiparametric family of distributions, Commun. Stat.-Theor. M., 53 (2024), 328–345.
    [26] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641 doi: 10.1093/biomet/84.3.641
    [27] A. W. Marshall, I. Olkin, Life distributions, New York: Springer, 2007.
    [28] D. Kumar, B. Klefsjö, Proportional hazards model: A review, Reliab. Eng. Syst. Safe., 44 (1994), 177–188. https://doi.org/10.1016/0951-8320(94)90010-8 doi: 10.1016/0951-8320(94)90010-8
    [29] A. Di Crescenzo, Some results on the proportional reversed hazards model, Stat. Prob. Lett., 50 (2000), 313–321. https://doi.org/10.1016/S0167-7152(00)00127-9 doi: 10.1016/S0167-7152(00)00127-9
    [30] R. C. Gupta, R. D. Gupta, Proportional reversed hazard rate model and its applications, J. Stat. Plan. Infer., 137 (2007), 3525–3536. https://doi.org/10.1016/j.jspi.2007.03.029 doi: 10.1016/j.jspi.2007.03.029
    [31] R. Zheng, S. Najafi, Y. Zhang, A recursive method for the health assessment of systems using the proportional hazards model, Reliab. Eng. Syst. Safe., 221 (2022), 108379. https://doi.org/10.1016/j.ress.2022.108379 doi: 10.1016/j.ress.2022.108379
    [32] R. Zheng, Y. Zhou, A dynamic inspection and replacement policy for a two-unit production system subject to interdependence, Appl. Math. Model., 103 (2022), 221–237. https://doi.org/10.1016/j.apm.2021.10.028 doi: 10.1016/j.apm.2021.10.028
    [33] R. Zheng, X. Zhao, C. Hu, X. Ren, A repair-replacement policy for a system subject to missions of random types and random durations, Reliab. Eng. Syst. Safe., 232 (2023), 109063. https://doi.org/10.1016/j.ress.2022.109063 doi: 10.1016/j.ress.2022.109063
    [34] N. Balakrishnan, G. Barmalzan, A. Haidari, Modified proportional hazard rates and proportional reversed hazard rates models via Marshall-Olkin distribution and some stochastic comparisons, J. Korean Stat. Soc., 47 (2018), 127–138.
    [35] G. Barmalzan, N. Balakrishnan, S. M. Ayat, A. Akrami, Orderings of extremes dependent modified proportional hazard and modified proportional reversed hazard variables under archimedean copula, Commun. Stat.-Theor. M., 50 (2021), 5358–5379. https://doi.org/10.1080/03610926.2020.1728331 doi: 10.1080/03610926.2020.1728331
    [36] M. M. Zhang, B. Lu, R. F. Yan, Ordering results of extreme order statistics from dependent and heterogeneous modified proportional (reversed) hazard variables, AIMS Math., 6 (2020), 584–606. https://doi.org/10.3934/math.2021036 doi: 10.3934/math.2021036
    [37] S. Das, S. Kayal, Some ordering results for the Marshall and Olkin's family of distributions, Commun. Math. Stat., 9 (2019), 153–179. https://doi.org/10.1007/s40304-019-00191-6 doi: 10.1007/s40304-019-00191-6
    [38] M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007.
    [39] H.J. Li, X. H. Li, Stochastic orders in reliability and risk, New York: Springer, 2013.
    [40] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, 2 Eds., New York: Springer, 2011.
    [41] R. B. Nelsen, An introduction to copulas, New York: Springer, 2006.
    [42] I. Schur, Uber eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 22 (1923), 9–20.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(535) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog