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1. Introduction

Order statistics play an important role in reliability theory, auction theory, operations research,
and many applied probability areas. Xk:n denotes the kth smallest of random variables X1, . . . , Xn,

k = 1, . . . , n. In reliability theory, Xk:n characterizes the lifetime of a (n − k + 1)-out-of-n system,
which works if at least n − k + 1 of all the n components function normally. Specifically, X1:n and
Xn:n denote the lifetimes of series and parallel systems, respectively. In auction theory, X1:n and Xn:n

represent the final price of the first-price procurement auction and the first-price sealed-bid auction
(see [1]), respectively. G. Pledger et al. [2] was the first to deal with the problem of comparing order
statistics from heterogeneous exponential random variables. Subsequently, many researchers devoted
themselves to stochastic comparisons of order statistics from heterogeneous independent or dependent
samples; to name a few, see [3–10].

In this paper, we focus on second-order statistics, which also have a very wide application
background. In auction theory, X2:n denotes the winner’s price for the bid in the second-price reverse
auction [11]. In the reliability context, the second-order statistic X2:n characterizes the lifetime of the
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(n−1)-out-of-n system in reliability theory (referred to as the fail-safe system; see [12]). E. Pǎltǎne [13]
established the hazard rate order for comparing second-order statistics from heterogeneous exponential
random variables. P. Zhao et al. [14] further extended the result of [13] from the hazard rate order to
the likelihood ratio order. P. Zhao et al. [15] examined the mean residual life order between the second-
order statistics from two sets of exponential random variables. P. Zhao et al. [16] studied the stochastic
comparison of fail-safe systems with heterogeneous exponential components in terms of the dispersive
order. N. Balakrishnan et al. [17] investigated the stochastic comparison of the second-order statistics
from independent heterogeneous and homogeneous samples having different sample sizes in the sense
of mean residual life, dispersive, hazard rate, and likelihood ratio orderings. X. Cai et al. [18] compared
the hazard rate functions of the second-order statistics arising from two sets of independent multiple-
outlier proportional hazard rates samples. For dependent and heterogeneous samples, R. Fang et
al. [19] conducted stochastic comparisons on sample minimums (maximums) and the second smallest
(largest) order statistic from proportional hazard rate and the proportional reversed hazard rates models.
Additionly, C. Li et al. [20] obtained the usual stochastic order of the sample extremes and the second
smallest order statistic from the scale model. T. Lando et al. [21] dealed with the increasing concave
comparison of k-order statistics (iid case) for wide nonparametric families. S. Das et al. [22] considered
stochastic comparisons between second-order statistics arising from general exponentiated location-
scale models when the random variables are independent, and established usual stochastic and hazard
rate orders between second-order statistics. O. Shojaee et al. [23] provided sufficient conditions to
compare the smallest and the second smallest (largest and second largest) order statistics of dependent
and heterogeneous random variables having the additive hazard model with the Archimedean copula
in the sense of usual stochastic order and hazard rate order. R. F. Yan [24] studied the stochastic
comparisons of the second-order statistics from dependent or independent and heterogeneous modified
proportional hazard rate observations. G. Barmalzan et al. [25] studied the second smallest and the
second largest order statistics from a general semiparametric family of distributions.

In reliability theory, to model the lifetime data with different hazard shapes, it is desirable to
introduce flexible families of distributions. To this end, A. W. Marshall et al. [26] developed a new
method to introduce one parameter to a base distribution, resulting in a new family of distribution with
more flexibility. For a baseline distribution function F with support R+ = (0,∞) and corresponding
survival function F̄, for any α ∈ R+,

G(x;α) =
F(x)

1 − ᾱF̄(x)
, x ∈ R+, (1.1)

and

H(x;α) =
αF(x)

1 − ᾱF(x)
, x ∈ R+, (1.2)

are two new defined distribution functions, where the parameter α is called a tilt parameter (ᾱ = 1−α)
(see [27]). Note that (1.1) is equivalent to (1.2) if α in (1.1) is changed to 1/α. The proportional hazard
rates (PHR) and the proportional reversed hazard rates (PRHR) models have important applications
in reliability engineering and operations research ( [28–33]). The random variables X1, · · · , Xn are
said to follow: (i) PHR model if Xi has the survival function F̄Xi(x) = F̄λi(x), i = 1, · · · , n, where F̄
is the baseline survival function and (λ1, · · · , λn) is the frailty vector; (ii) PRHR model if Xi has the
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distribution function FXi(x) = Fβi(x), i = 1, · · · , n, where F is the baseline distribution and (β1, · · · , βn)
is the resilience vector. It is well-known that the exponential, Weibull, Lomax, and Pareto distributions
are special cases of the PHR model, and the Fréchet distribution is a special case of the PRHR model.
N. Balakrishnan et al. [34] introduced the modified proportional hazard rates (MPHR) and modified
proportional reversed hazard rates (MPRHR) models by adding a parameter to the PHR and PRHR
models, respectively. For any α, λ, β ∈ R+, their respective distributions are given by

G(x;α, λ) =
1 − F̄λ(x)

1 − ᾱF̄λ(x)
, x ∈ R+,

and

H(x;α, β) =
αFβ(x)

1 − ᾱFβ(x)
, x ∈ R+,

where λ and β are the PHR and PRHR parameters, respectively. They established some stochastic
comparison results between the corresponding order statistics with independent samples. G. Barmalzan
et al. [35] discussed the hazard rate order and reversed hazard rate order of series and parallel systems
with dependent components following either MPHR or MPRHR models under Archimedean copula.
M. M. Zhang et al. [36] investigated stochastic comparisons on extreme order statistics from dependent
and heterogeneous samples following MPHR and MPRHR models, and built the usual stochastic order
for sample minimums and maximums, the hazard rate order on minimums of sample and the reversed
hazard rate order on maximums of sample. S. Das et al. [37] introduced a scale parameter into the
MPHR and MPRHR model that leads to new models, which are called modified proportional hazard
rate scale (MPHRS) and modified proportional reversed hazard rate scale (MPRHRS) models. For any
α, λ, θ, β ∈ R+,

G(x;α, λ, θ) =
1 − F̄λ(θx)

1 − ᾱF̄λ(θx)
, x ∈ R+,

and

H(x;α, β, θ) =
αFβ(θx)

1 − ᾱFβ(θx)
, x ∈ R+,

are two newly defined distribution functions, respectively. They also obtained some stochastic
comparison results on independent samples in terms of the usual stochastic, (reversed) hazard rate
orders. The MPHRS (MPRHRS) model contains the MPHR (MPRHR), PHR (PRH), and scale models
as special cases, and the flexibility that it possesses makes it quite suitable for modeling reliability and
data analysis.

Motivated by the work of [19, 20], in this paper, we consider two samples from dependent
and heterogeneous MPHRS and MPRHRS models. Some sufficient conditions are established to
stochastically compare the second smallest (largest) order statistics of two samples with different
parameters in the sense of the usual stochastic order.

The remainder of this paper is organized as follows: Section 2 recalls some concepts and notations
used in this paper. Section 3 presents the main results and provides some sufficient conditions under
which the two samples from the MPHRS model are stochastically comparable in the sense of the usual
stochastic order. Also, similar results are obtained for the case of samples following the MPRHRS
model in terms of the usual stochastic order. Section 4 presents the applications of the obtained results.
Section 5 concludes the paper.
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2. Preliminaries

In this section, let us first recall some important concepts and notations related to the main results
of this article.

For random variables X and Y , let F and G be distribution functions ( f and g be densities when
absolutely continuous), and denote F̄ = 1 − F and Ḡ = 1 − G as their reliability functions and h and
r as their hazard rate and reversed hazard rate functions, respectively. Denote In = {1, . . . , n} and
1 = (1, . . . , 1︸  ︷︷  ︸

n

).

Definition 1. For two nonnegative random variables X and Y, X is said to be smaller than Y in the
(i) stochastic order (denoted by X ≤st Y) if F̄(x) ≤ Ḡ(x) for all x ∈ R+;
(ii) hazard rate order (denoted by X ≤hr Y) if Ḡ(x)/F̄(x) is increasing in x ∈ R+;
(iii) reversed hazard rate order (denoted by X ≤rh Y) if G(x)/F(x) is increasing in x ∈ R+.

For more comprehensive discussions on stochastic orders, please refer to [38, 39].
Next, we introduce the notions of majorization and related orders, which are key tools in

establishing various inequalities arising from many research areas. For two real vectors x = (x1, ..., xn)
and y = (y1, ..., yn) ∈ Rn, denote the increasing arrangement of the components of x and y by
x(1) ≤ x(2) ≤ · · · ≤ x(n) and y(1) ≤ y(2) ≤ · · · ≤ y(n), respectively.

Definition 2. The vector x is said to be
(i) majorized by the vector y (write as x

m
� y ) if

∑ j
i=1 x(i) ≥

∑ j
i=1 y(i), for all j ∈ In−1, and

∑n
i=1 x(i) =∑n

i=1 y(i);

(ii) weakly supermajorized by the vector y (write as x
w
� y ) if

∑ j
i=1 x(i) ≥

∑ j
i=1 y(i), for all j ∈ In;

(iii) p-large than the vector y (write as x
p
� y ) if

∏n
i= j x(i) ≥

∏ j
i=1 y(i), for all j ∈ In.

Definition 3. A real function ~ defined onA ⊆ Rn is said to be Schur-convex (Schur-concave) onA if

x
m
� y onA ⇒ ~(x) ≤ (≥)~(y).

It is well-known that x
m
� y ⇒ x

w
� y ⇒ x

p
� y for any x, y ∈ Rn, while the converse is not always

true. For more details on majorization and Schur-convexity (Schur-concavity), please refer to [40].
Now, let us review the concept of Archimedean copulas.

Definition 4. For a decreasing and continuous function ψ : [0,+∞) 7→ [0, 1], such that ψ(0) = 1 and
ψ(+∞) = 0, let φ = ψ−1 be the pseudo-inverse of ψ, then

Cψ(u1, ..., un) = ψ(φ(u1) + ... + φ(un)), ui ∈ [0, 1], i ∈ In,

is said to be an Archimedean copula with generator ψ if (−1)kψk(x) ≥ 0 for k = 0, . . . , n − 2 and
(−1)n−2ψn−2(x) is decreasing and convex.

For detailed discussions on copulas and their applications, please refer to [41]. The following
lemmas are useful to establish the main results.
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Lemma 1. [42] Let I ⊆ R be an open interval. A continuously differentiable ~ : In → R is Schur-
convex (Schur-concave) if and only if ~ is symmetric on In, and for all i , j

(xi − x j)
(
∂~(x)
∂xi

−
∂~(x)
∂x j

)
≥ (≤)0.

Lemma 2. [40] For a real function ~ on A ⊆ Rn, x
w
� y implies ~(x) ≤ (≥)~(y) if and only if ~ is

decreasing (increasing) and Schur-convex (Schur-concave) onA.

Throughout the manuscript, all concerned random variables are assumed to be absolutely
continuous and nonnegative, and the terms increasing and decreasing stand for nondecreasing and
nonincreasing, respectively.

3. Results

In this section, we present the stochastic comparison results of the second smallest (largest) order
statistics from dependent and heterogeneous MPHRS (MPRHRS) samples in the sense of the usual
stochastic order.

3.1. Second smallest order statistics

Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) be the random vectors. For convenience, denote X ∼
MPHRS (α; θ; λ; F̄1;ψ) and Y ∼ MPHRS (α; θ; λ; F̄2;ψ). The samples follow the MPHRS model,
where F̄1 and F̄2 are the baseline survival functions, ψ is generator of the associated Archimedean
survival copula, and α = (α1, . . . , αn), θ = (θ1, . . . , θn), and λ = (λ1, . . . , λn) are the tilt, scale, and
modified proportional hazard rate vectors, respectively. Denote the hazard rate functions of the baseline
survival functions F̄1 and F̄2 by h1 and h2, respectively.

The first result presents the result for comparing the samples with different tilt parameters in the
sense of the usual stochastic order.

Theorem 1. For X ∼ MPHRS (α; θ1; λ1; F̄1;ψ) and Y ∼ MPHRS (β; θ1; λ1; F̄2;ψ), if F̄1(x) ≥ F̄2(x),
then α

w
� β implies

X2:n ≥st Y2:n.

Proof. The survival function of X2:n can be written as

F̄X2:n(x) =

n∑
i=1

ψ

∑
j,i

φ

(
α jF̄λ

1(θx)

1 − ᾱ jF̄λ
1(θx)

) − (n − 1)ψ

 n∑
i=1

φ

(
αiF̄λ

1(θx)

1 − ᾱiF̄λ
1(θx)

)
= J2

(
α, θ, λ, ψ, F̄1(x)

)
.

It is easy to obtain that
J2

(
α, θ, λ, ψ, F̄1(x)

)
≥ J2

(
α, θ, λ, ψ, F̄2(x)

)
.

It is needed to show that J2
(
α, θ, λ, ψ, F̄2(x)

)
is increasing in αk, k ∈ In and Schur-concave in α.

Differentiating J2
(
α, θ, λ, ψ, F̄2(x)

)
with respect to αk gives rise to

∂J2
(
α, θ, λ, ψ, F̄2(x)

)
∂αk
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=

[∑
i,k

ψ′

∑
j,i

φ

(
α jF̄λ

2(θx)

1 − ᾱ jF̄λ
2(θx)

) − (n − 1)ψ′
 n∑

i=1

φ

(
αiF̄λ

2(θx)

1 − ᾱiF̄λ
2(θx)

) ]
×

F̄λ
2(θx)

(
1 − F̄λ

2(θx)
)

ψ′
(
φ
(

αk F̄λ
2 (θx)

1−ᾱk F̄λ
2 (θx)

)) (
1 − ᾱkF̄λ

2(θx)
)2
. (3.1)

Note that ψ is decreasing and convex. It holds that ψ′ is increasing and nonpositive, as a result, (3.1)
is nonnegative, which implies that J2

(
α, θ, λ, ψ, F̄2(x)

)
is increasing in αk. Furthermore, for k , l, we

have

(αk − αl)
(
∂J2

(
α, θ, λ, ψ, F̄2(x)

)
∂αk

−
∂J2

(
α, θ, λ, ψ, F̄2(x)

)
∂αl

)
=

{[∑
i,k

ψ′

∑
j,i

φ

(
α jF̄λ

2(θx)

1 − ᾱ jF̄λ
2(θx)

) − (n − 1)ψ′
 n∑

i=1

φ

(
αiF̄λ

2(θx)

1 − ᾱiF̄λ
2(θx)

) ] 1
∆2(αk, x)

−

[∑
i,l

ψ′

∑
j,i

φ

(
α jF̄λ

2(θx)

1 − ᾱ jF̄λ
2(θx)

) − (n − 1)ψ′
 n∑

i=1

φ

(
αiF̄λ

2(θx)

1 − ᾱiF̄λ
2(θx)

) ] 1
∆2(αl, x)

}
×F̄λ

2(θx)(1 − F̄λ
2(θx))(αk − αl),

where

∆2(α, x) =
(
1 − ᾱF̄λ

2(θx)
)2
ψ′

(
φ

(
αF̄λ

2(θx)

1 − ᾱF̄λ
2(θx)

))
.

By the decreasing and convex property of ψ, for αk ≥ (≤)αl, we have[∑
i,k

ψ′

∑
j,i

φ

(
α jF̄λ

2(θx)

1 − ᾱ jF̄λ
2(θx)

) − (n − 1)ψ′
 n∑

i=1

φ

(
αiF̄λ

2(θx)

1 − ᾱiF̄λ
2(θx)

) ]
≥ (≤)

[∑
i,l

ψ′

∑
j,i

φ

(
α jF̄λ

2(θx)

1 − ᾱ jF̄λ
2(θx)

) − (n − 1)ψ′
 n∑

i=1

φ

(
αiF̄λ

2(θx)

1 − ᾱiF̄λ
2(θx)

) ]
and [∑

i,k

ψ′

∑
j,i

φ

(
α jF̄λ

2(θx)

1 − ᾱ jF̄λ
2(θx)

) − (n − 1)ψ′
 n∑

i=1

φ

(
αiF̄λ

2(θx)

1 − ᾱiF̄λ
2(θx)

) ] ≤ 0.

It is easy to verify that 1/∆2(α, x) is negative and increasing in α for the given x ≥ 0. Thus, for k , l,

(αk − αl)
(
∂J2

(
α, θ, λ, ψ, F̄2(x)

)
∂αk

−
∂J2

(
α, θ, λ, ψ, F̄2(x)

)
∂αl

)
≤ 0.

By Lemma 1, J2
(
α, θ, λ, ψ, F̄2(x)

)
is Schur-concave, which means that −J2

(
α, θ, λ, ψ, F̄2(x)

)
is Schur-

convex. By Lemma 2, α
w
� β implies that −J2

(
α, θ, λ, ψ, F̄2(x)

)
≤ −J2

(
β, θ, λ, ψ, F̄2(x)

)
. Hence,

J2
(
α, θ, λ, ψ, F̄1(x)

)
≥ J2

(
β, θ, λ, ψ, F̄2(x)

)
.

That is, X2:n ≥st Y2:n. The proof is completed. �
The next corollary follows immediately from Theorem 1.
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Corollary 1. For X ∼ MPHRS (α1; θ1; λ1; F̄1;ψ) and Y ∼ MPHRS (α; θ1; λ1; F̄2;ψ). If F̄1(x) ≥
F̄2(x), then

α ≥
1
n

n∑
i=1

αi ⇒ X2:n ≥st Y2:n.

The next theorem investigates the impact of the scale vector on the second smallest samples with
respect to the usual stochastic order, whenever other parameters are equal.

Theorem 2. For X ∼ MPHRS (α1; θ; λ1; F̄1;ψ) and Y ∼ MPHRS (α1; η; λ1; F̄2;ψ), where 0 < α ≤ 1.
If ψ is log-concave, F̄1(x) ≤ F̄2(x), and h2(x) is decreasing in x, then θ

w
� η implies

X2:n ≤st Y2:n.

Proof. The survival function of X2:n can be written as

F̄X2:n(x) =

n∑
i=1

ψ

∑
j,i

φ

(
αF̄λ

1(θ jx)

1 − ᾱF̄λ
1(θ jx)

) − (n − 1)ψ

 n∑
i=1

φ

(
αF̄λ

1(θix)

1 − ᾱF̄λ
1(θix)

)
= J3

(
α, θ, λ, ψ, F̄1(x)

)
.

It is easy to derive that
J3

(
α, θ, λ, ψ, F̄1(x)

)
≤ J3

(
α, θ, λ, ψ, F̄2(x)

)
.

It is needed to show that J3
(
α, θ, λ, ψ, F̄2(x)

)
is decreasing in θk, k ∈ In and Schur-convex in θ.

Differentiating J3
(
α, θ, λ, ψ, F̄2(x)

)
with respect to θk gives rise to

∂J3
(
α, θ, λ, ψ, F̄2(x)

)
∂θk

=

[
(n − 1)ψ′

 n∑
i=1

φ

(
αF̄λ

2(θix)

1 − ᾱF̄λ
2(θix)

) −∑
i,k

ψ′

∑
j,i

φ

(
αF̄λ

2(θ jx)

1 − ᾱF̄λ
2(θ jx)

) ]

×

ψ
(
φ
(

αF̄λ
2 (θk x)

1−ᾱF̄λ
2 (θk x)

))
λαxh2(θkx)

ψ′
(
φ
(

αF̄λ
2 (θk x)

1−ᾱF̄λ
2 (θk x)

)) (
1 − ᾱF̄λ

2(θkx)
)

= λαx∆3(θk, x)∆4(θk, x), (3.2)

where

∆3(θk, x) = (n − 1)ψ′
 n∑

i=1

φ

(
αF̄λ

2(θix)

1 − ᾱF̄λ
2(θix)

) −∑
i,k

ψ′

∑
j,i

φ

(
αF̄λ

2(θ jx)

1 − ᾱF̄λ
2(θ jx)

) ,
and

∆4(θk, x) =

ψ
(
φ
(

αF̄λ
2 (θk x)

1−ᾱF̄λ
2 (θk x)

))
h2(θkx)

ψ′
(
φ
(

αF̄λ
2 (θk x)

1−ᾱF̄λ
2 (θk x)

)) (
1 − ᾱF̄λ

2(θkx)
) .
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Since ψ′(x) ≤ 0 and ψ′(x) is increasing in x, φ
(

αF̄λ
2 (θk x)

1−ᾱF̄λ
2 (θk x)

)
is increasing in θk, then ∆3(θk, x) is decreasing

in θk and nonnegative by noting that φ(x) ∈ [0, 1]. Note that ψ is log-concave, and h2(θkx) and 1/
(
1 −

ᾱF̄λ
2(θkx)

)
are decreasing in θk for the given x ≥ 0 and 0 < α ≤ 1. We have that ∆4(θk, x) is increasing

in θk and negative. Therefore, (3.2) is nonpositive, that is, J3
(
α, θ, λ, ψ, F̄2(x)

)
is decreasing in θk, and

∆3(θk, x)∆4(θk, x) is increasing in θk, k ∈ In. Thus, for k , l,

(θk − θl)
(∂J3

(
α, θ, λ, ψ, F̄2(x)

)
∂θk

−
∂J3

(
α, θ, λ, ψ, F̄2(x)

)
∂θl

)
= λαx(θk − θl)

(
∆3(θk, x)∆4(θk, x) − ∆3(θl, x)∆4(θl, x)

)
≥ 0.

The desired result follows by Lemma 2. Hence, we complete the proof. �

Remark 1. Theorem 4.3 of [20] developed a similar result for the scale model, which can be treated
as a special case of the above result when α = λ = 1 and F̄1 = F̄2. As a further study, it is of interest
to obtain the results for the case α > 1.

As a consequence of Theorem 2, we obtain the following corollary immediately.

Corollary 2. For X ∼ MPHRS (α1; θ1; λ1; F̄1;ψ) and Y ∼ MPHRS (α1; θ; λ1; F̄2;ψ), where 0 < α ≤

1, if ψ is log-concave, F̄1(x) ≤ F̄2(x), and h2(x) is decreasing in x, then

θ ≥
1
n

n∑
i=1

θi ⇒ X2:n ≤st Y2:n.

Now, we present an example to illustrate the result of Theorem 2.

Example 1. Let F̄1(x) = e−3x, F̄2(x) = e−2x, and generator ψ(x) = e
1−ex

a , 0 < a ≤ 1. Take n = 4, λ =

0.2, α = 0.2, a = 0.1, and θ = (0.6, 0.7, 0.8, 0.9)
w
� (0.2, 0.3, 0.5, 0.7) = η. It is easy to check that

the conditions of Theorem 2 are all satisfied. To display the whole of survival curves of X2:4 and Y2:4

on [0,∞), we perform the transformation (x + 1)−1 : [0,∞) 7−→ [0, 1]. The distribution functions of
(X2:4 + 1)−1 and (Y2:4 + 1)−1 are plotted in Figure 1, which confirms X2:4 ≤st Y2:4.
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Figure 1. Plots of distribution functions F(X2:4+1)−1(x) and F(Y2:4+1)−1(x).
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3.2. Second largest order statistics

In this subsection, we carry out the stochastic comparison of the second largest samples following
the MPRHRS model. Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) be the random vectors. We denote X ∼
MPRHRS (α; θ; λ; F1;ψ) and Y ∼ MPRHRS (α; θ; λ; F2;ψ). The samples follow the MPRHRS model,
where F1 and F2 are the baseline distribution functions, ψ is generator of the associated Archimedean
copula, and α = (α1, . . . , αn), θ = (θ1, . . . , θn), and λ = (λ1, . . . , λn) are the tilt, scale, and modified
proportional reversed hazard rate vectors, respectively.

First, we establish sufficient conditions for the usual stochastic order when the samples have
different modified proportional reversed hazard rate vectors.

Theorem 3. For X ∼ MPRHRS (α1; θ1; λ; F1;ψ) and Y ∼ MPRHRS (α1; θ1;µ; F2;ψ), where 0 < α ≤
1. If ψ is log-concave, F1(x) ≤ F2(x), then λ

w
� µ implies

Xn−1:n ≥st Yn−1:n.

Proof. The distribution function of Xn−1:n and Yn−1:n can be expressed as

FXn−1:n(x) =

n∑
i=1

ψ

∑
j,i

φ

 αFλ j

1 (θx)

1 − ᾱFλ j

1 (θx)


 − (n − 1)ψ

 n∑
i=1

φ

 αFλi
1 (θx)

1 − ᾱFλi
1 (θx)


= Q1

(
α, θ, λ, ψ, F1(x)

)
,

and

FYn−1:n(x) =

n∑
i=1

ψ

∑
j,i

φ

 µFµ j

2 (θx)

1 − ᾱFµ j

2 (θx)

 − (n − 1)ψ

 n∑
i=1

φ

(
µFµi

2 (θx)
1 − ᾱFµi

2 (θx)

)
= Q1

(
α, θ,µ, ψ, F2(x)

)
.

We need to show that
Q1

(
α, θ, λ, ψ, F1(x)

)
≤ Q1

(
α, θ,µ, ψ, F2(x)

)
.

It is easy to obtain that
Q1

(
α, θ, λ, ψ, F1(x)

)
≤ Q1

(
α, θ, λ, ψ, F2(x)

)
.

It suffices to show that Q1
(
α, θ, λ, ψ, F2(x)

)
is decreasing in λk, k ∈ In and Schur-convex in λ. Note that

ψ is decreasing and convex. It holds that ψ′ is increasing and nonpositive. As a result, differentiating
Q1

(
α, θ, λ, ψ, F2(x)

)
with respect to λk, we have

∂Q1
(
α, θ, λ, ψ, F2(x)

)
∂λk

=

[∑
i,k

ψ′

∑
j,i

φ

 αFλ j

2 (θx)

1 − ᾱFλ j

2 (θx)


 − (n − 1)ψ

 n∑
i=1

φ

 αFλi
2 (θx)

1 − ᾱFλi
2 (θx)

 ]

×

ln F2(θx) αF
λk
2 (θx)

1−ᾱF
λk
2 (θx)

ψ′
(
φ
(

αF
λk
2 (θx)

1−ᾱF
λk
2 (θx)

)) (
1 − ᾱFλk

2 (θx)
) ≤ 0,

AIMS Mathematics Volume 9, Issue 4, 8904–8919.



8913

that is, Q1
(
α, θ, λ, ψ, F2(x)

)
is decreasing in λk. Furthermore, for k , l, we have

(λk − λl)
(
∂Q1

(
α, θ, λ, ψ, F2(x)

)
∂λk

−
∂Q1

(
α, θ, λ, ψ, F2(x)

)
∂λl

)
=

{[∑
i,k

ψ′

∑
j,i

φ

 αFλ j

2 (θx)

1 − ᾱFλ j

2 (θx)


 − (n − 1)ψ

 n∑
i=1

φ

 αFλi
2 (θx)

1 − ᾱFλi
2 (θx)

 ]Λ1(λk, x)

−

[∑
i,l

ψ′

∑
j,i

φ

 αFλ j

2 (θx)

1 − ᾱFλ j

2 (θx)


 − (n − 1)ψ

 n∑
i=1

φ

 αFλi
2 (θx)

1 − ᾱFλi
2 (θx)

 ]Λ1(λl, x)
}

× ln F2(θx)(λk − λl),

where

Λ1(λ, x) =

αFλ
2 (θx)

1−ᾱFλ
2 (θx)

ψ′
(
φ
(

αFλ
2 (θx)

1−ᾱFλ
2 (θx)

)) (
1 − ᾱFλ

2(θx)
) .

By the decreasing and convex property of ψ, for λk ≥ (≤)λl, it holds that[∑
i,k

ψ′

∑
j,i

φ

 αFλ j

2 (θx)

1 − ᾱFλ j

2 (θx)


 − (n − 1)ψ′

 n∑
i=1

φ

 αFλi
2 (θx)

1 − ᾱFλi
2 (θx)

 ] ln F2(θx)

≤ (≥)[∑
i,l

ψ′

∑
j,i

φ

 αFλ j

2 (θx)

1 − ᾱFλ j

2 (θx)


 − (n − 1)ψ′

 n∑
i=1

φ

 αFλi
2 (θx)

1 − ᾱFλi
2 (θx)

 ] ln F2(θx)

and [∑
i,k

ψ′

∑
j,i

φ

 αFλ j

2 (θx)

1 − ᾱFλ j

2 (θx)


 − (n − 1)ψ′

 n∑
i=1

φ

 αFλi
2 (θx)

1 − ᾱFλi
2 (θx)

 ] ln F2(θx) ≥ 0.

It is easy to check that Λ1(λ, x) is nonpositive and increasing in λ, then, for k , l,

(λk − λl)
(
∂Q1

(
α, θ, λ, ψ, F2(x)

)
∂λk

−
∂Q1

(
α, θ, λ, ψ, F2(x)

)
∂λl

)
≥ 0.

Therefore, Q1
(
α, θ, λ, ψ, F2(x)

)
is Schur-convex by Lemma 1. According to Lemma 2, λ

w
� µ implies

Q1
(
α, θ, λ, ψ, F2(x)

)
≤ Q1

(
α, θ,µ, ψ, F2(x)

)
, then, we have Xn−1:n ≥st Yn−1:n, which completes the proof.

�

Remark 2. Theorem 6.2 of [19] obtained a similar result for the PRH model, which can be regarded
as a special case of the above result when α = θ = 1 and F1 = F2.

The following corollary can be derived immediately from Theorem 3.

Corollary 3. For X ∼ MPRHRS (α1; θ1; λ1; F1;ψ) and Y ∼ MPRHRS (α1; θ1; λ; F2;ψ), where 0 <

α ≤ 1, if ψ is log-concave, F1(x) ≤ F2(x), then

λ ≥
1
n

n∑
i=1

λi ⇒ Xn−1:n ≥st Yn−1:n.
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In what follows, we consider the situation in which the two samples possess different tilt parameters.

Theorem 4. For X ∼ MPRHRS (α; θ1; λ1; F1;ψ) and Y ∼ MPRHRS (β; θ1; λ1; F2;ψ). If F1(x) ≥
F2(x), then α

w
� β implies

Xn−1:n ≤st Yn−1:n.

Proof. The distribution function of Xn−1:n can be written as

FXn−1:n(x) =

n∑
i=1

ψ

∑
j,i

φ

(
α jFλ

1(θx)
1 − ᾱ jFλ

1(θx)

) − (n − 1)ψ

 n∑
i=1

φ

(
αiFλ

1(θx)
1 − ᾱiFλ

1(θx)

)
= Q2

(
α, θ, λ, ψ, F1(x)

)
.

It is easy to obtain that
Q2

(
α, θ, λ, ψ, F1(x)

)
≥ Q2

(
α, θ, λ, ψ, F2(x)

)
.

It is needed to show that Q2
(
α, θ, λ, ψ, F2(x)

)
with respect to ak is increasing and Schur-concave in α,

k ∈ In. The derivative of Q2
(
α, θ, λ, ψ, F2(x)

)
with respect to αk is

∂Q2
(
α, θ, λ, ψ, F2(x)

)
∂αk

=

[∑
i,k

ψ′

∑
j,i

φ

(
α jFλ

2(θx)
1 − ᾱ jFλ

2(θx)

) − (n − 1)ψ′
 n∑

i=1

φ

(
αiFλ

2(θx)
1 − ᾱiFλ

2(θx)

) ]
×

Fλ
2(θx)(1 − Fλ

2(θx))

ψ′
(
φ
(

αkFλ
2 (θx)

1−ᾱkFλ
2 (θx)

)) (
1 − ᾱkFλ

2(θx)
)2
.

The rest of this part can be proven in a similar manner with Theorem 1 and is thus omitted. �
The next corollary follows immediately from Theorem 4.

Corollary 4. For X ∼ MPRHRS (α1; θ1; λ1; F1;ψ) and Y ∼ MPRHRS (α; θ1; λ1; F2;ψ). If F1(x) ≥
F2(x), then

α ≥
1
n

n∑
i=1

αi ⇒ Xn−1:n ≤st Yn−1:n.

The following example demonstrates the result of Theorem 4.

Example 2. Let F1(x) = 1 − e−3x and F2(x) = 1 − e−2x, and generator ψ(x) = (ax + 1)−1/a, a > 0. Take
n = 4, λ = 0.5, θ = 0.1, a = 0.6, and α = (0.6, 0.7, 0.8, 0.8)

w
� (0.3, 0.4, 0.5, 0.6) = β. It is easy to check

that the conditions of Theorem 4 are all satisfied. Thus, X3:4 ≤st Y3:4, as shown in Figure 2.

One natural question is whether the condition of weakly supermajorization order can be replaced
by p-large order in Theorem 4. The following example gives a negative answer.

Example 3. Let F1(x) = F2(x) = 1 − e−x, and generator ψ(x) = (ax + 1)−1/a, a > 0. Take n = 3, α =

(3, 4, 5), and β = (2, 4.8, 6), and it holds that α
p
� βwhile α

w
� β. The curve of F̄(X2:3+1)−1(x)−F̄(Y2:3+1)−1(x)

is displayed in Figure 3, from which we confirm that X2:3 �st Y2:3 and X2:3 �st Y2:3.
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Figure 2. Plots of survival functions F̄(X3:4+1)−1(x) and F̄(Y3:4+1)−1(x).
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Figure 3. Plots of F̄(X2:3+1)−1(x) − F̄(Y2:3+1)−1(x).

4. Some applications

4.1. Reliability theory

In reliability theory, the k-out-of-n system as the popular fault tolerant system has been widely
applied in industrial engineering and system security. Specifically, X1:n and Xn:n denote the lifetimes of
series and parallel systems, respectively, and the (n − 1)-out-of-n system is referred to as the fail-safe
system.

Consider a fail-safe system with dependent and heterogeneous components lifetime following the
MPHRS model. Theorem 2 states that the larger the baseline survival function for the negatively lower
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orthant dependent components, the larger heterogeneity among the scale parameters, which leads to the
better performance of the fail-safe system, respectively. Theorem 1 states that the larger the baseline
survival function and the more symmetric the tilt parameter vector leads to a more reliable fail-safe
system.

4.2. Auction theory

The second-price sealed-bid auction is of important theoretical and practical interest in auction
theory. Several bidders compete to buy a good, and bidders hand in their bids to the auctioneers
simultaneously without the knowledge of their rivals’ bids. The bidder with the highest bid wins the
object and pays the second highest bid in the English auction. While in a second-price reversed auction,
the lowest bidder wins and is paid at a price corresponding to the second lowest bid. The winner will
pay the rent defined as the difference between his or her bid and the final price for the auctioneer.

In a second-price reversed auction, there are several bidders with dependent and different bids
following the MPHRS model with negatively lower orthant dependence. The larger the baseline
survival function, the more symmetric scale and modified proportional hazard rate vectors lead to
stochastically larger the revenue of the auctioneer, and the more symmetric tilt parameter vector incurs
to stochastically lower the revenue of the auctioneer. In the second price auction for bids following
the MPRHRS model, Theorem 3 (Theorem 4) states that the more symmetric modified proportional
hazard rate vector (tilt parameter vector) with a lower (higher) baseline distribution function will lead
to stochastically lower (higher) the revenue of the auctioneer.

5. Conclusions

In this paper, we study the problem of stochastically comparing the second smallest (largest) order
statistics from dependent and heterogeneous samples. For the second smallest order statistics from
MPHRS samples, sufficient conditions are obtained for the usual stochastic order whenever the sample
has different parameters. In addition, similar results are established for the second largest order
statistics from MPHRS samples. Lastly, some applications of the obtained results in reliability theory
and auction theory are provided.
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