The authors establish sufficient conditions for the existence of solutions to a boundary value problem for fractional differential inclusions involving the Caputo-Hadamard type derivative of order $ r \in (1, 2] $ on infinite intervals. Both cases of convex and nonconvex valued right hand sides are considered. The technique of proof involves fixed point theorems combined with a diagonalization method.
Citation: Mouffak Benchohra, John R. Graef, Nassim Guerraiche, Samira Hamani. Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line[J]. AIMS Mathematics, 2021, 6(6): 6278-6292. doi: 10.3934/math.2021368
The authors establish sufficient conditions for the existence of solutions to a boundary value problem for fractional differential inclusions involving the Caputo-Hadamard type derivative of order $ r \in (1, 2] $ on infinite intervals. Both cases of convex and nonconvex valued right hand sides are considered. The technique of proof involves fixed point theorems combined with a diagonalization method.
[1] | S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018. |
[2] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. |
[3] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. |
[4] | Y. Adjabi, F. Jarad, D. Beleanu, T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661-681. |
[5] | R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033. doi: 10.1007/s10440-008-9356-6 |
[6] | R. P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, Boundary value problem for differential equations involving Riemann-Liouville fractional derivative on the half-line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18 (2011), 235-244. |
[7] | R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 141 2001. |
[8] | J. P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984. |
[9] | J. P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990. |
[10] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1-27. doi: 10.1016/S0022-247X(02)00001-X |
[11] | C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 580, 1977. |
[12] | H. Covitz, S. B. Nadler Jr, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5-11. doi: 10.1007/BF02771543 |
[13] | K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992. |
[14] | J. R. Graef, L. Kong, A. Ledoan, M. Wang, Stability analysis of a fractional online social network model, Math. Comput. Simulation, 178 (2020), 625-645. doi: 10.1016/j.matcom.2020.07.012 |
[15] | J. R. Graef, S. Ho, L. Kong, M. Wang, A fractional differential equation model for bike share systems, J. Nonlinear Funct. Anal., 2019 (2019), 1-14. |
[16] | A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. |
[17] | N. Guerraiche, S. Hamani, J. Henderson, Initial value problems for fractional functional differential inclusions with Hadamard type derivative, Arch. Math. (Brno), 52 (2016), 263-273. |
[18] | N. Guerraiche, S. Hamani, J. Henderson, Boundary value problems for differential inclusions with integral and anti-periodic conditions, Comm. Appl. Nonlinear Anal., 23 (2016), 33-46. |
[19] | J. Hadamard, Essai sur l'etude des fonctions donnees par leur development de Taylor, J. Mat. Pure Appl. Ser., 8 (1892), 101-186. |
[20] | S. Hamani, M. Benchohra, J. R. Graef, Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions, Electron. J. Differential Equations, 2010 (2010), 1-16. |
[21] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. |
[22] | F. Jarad, T. Abdeljawad, D. Beleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Difference Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142 |
[23] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. |
[24] | A. Lasota, Z. Opial, An application of the Kakutani-ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786. |
[25] | S. M. Momani, S. B. Hadid, Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci., 2004 (2004), 697-701. doi: 10.1155/S0161171204302231 |
[26] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[27] | W. Shammakh, A study of Caputo-Hadamard-Type fractional differential equations with nonlocal boundary conditions, J. Funct. Spaces, 2016 (2016), Art. ID 7057910, 9. |
[28] | A. Zahed, S. Hamani, J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential inclusions with integral conditions, Moroccan J. Pure Appl. Anal., 6 (2020), 62-75. doi: 10.2478/mjpaa-2020-0006 |