In this paper we deal with a Dirichlet problem for an elliptic equation involving the 1-Laplace operator. Under suitable assumptions on the nonlinearity we show that there exists a symmetric, monotonic and positive solution via the moving plane method. We shall show a priori estimates for some positive solutions.
Citation: Lin Zhao. Monotonicity and symmetry of positive solution for 1-Laplace equation[J]. AIMS Mathematics, 2021, 6(6): 6255-6277. doi: 10.3934/math.2021367
In this paper we deal with a Dirichlet problem for an elliptic equation involving the 1-Laplace operator. Under suitable assumptions on the nonlinearity we show that there exists a symmetric, monotonic and positive solution via the moving plane method. We shall show a priori estimates for some positive solutions.
[1] | W. Allegretto, Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications, Nonlinear Anal., 32 (1998), 819-830. doi: 10.1016/S0362-546X(97)00530-0 |
[2] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7 |
[3] | F. Andreu, C. Ballester, V. Caselles, J. M. Mazón, The Dirichlet problem for the total variation flow, J. Funct. Anal., 180 (2001), 347-403. doi: 10.1006/jfan.2000.3698 |
[4] | G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., 135 (1983), 293-318. doi: 10.1007/BF01781073 |
[5] | C. Azizieh, P. Clément, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations, J. Differ. Equations, 179 (2002), 213-245. doi: 10.1006/jdeq.2001.4029 |
[6] | C. Azizieh, L. Lemaire, A note on the moving hyperplane method, In: Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, EJDE, 8 (2002), 1-6. |
[7] | H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat., 22 (1991), 1-37. doi: 10.1007/BF01244896 |
[8] | G. Q. Chen, H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118. doi: 10.1007/s002050050146 |
[9] | V. De Cicco, D. Giachetti, F. Oliva, F. Petitta, The Dirichlet problem for singular elliptic equations with general nonlinearities, Calc. Var., 58 (2019), 1-40. doi: 10.1007/s00526-018-1462-3 |
[10] | G. Crasta, V. De Cicco, An extension of the pairing theory between divergence-measure fields and BV functions, J. Funct. Anal., 276 (2019), 2605-2635. doi: 10.1016/j.jfa.2018.06.007 |
[11] | G. Crasta, V. De Cicco, Anzellotti's pairing theory and the Gauss-Green theorem, Adv. Math., 343 (2019), 935-970. doi: 10.1016/j.aim.2018.12.007 |
[12] | L. Damascelli, Some remarks on the method of moving planes, Differ. Integral Equ., 11 (1998), 493-501. |
[13] | L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré. Anal. Non linéaire, 15 (1998), 493-516. doi: 10.1016/S0294-1449(98)80032-2 |
[14] | L. Damascelli, F. Pacella, Monotonicity and symmetry of solutions of p-Laplace equations, $1 < p < 2$, via the moving plane method, Ann. Scuola Norm. Sci., 26 (1998), 689-707. |
[15] | L. Damascelli, F. Pacella, Monotonicity and symmetry results for $p$-Laplace equations and application, Adv. Differential Equ., 5 (2000), 1179-1200. |
[16] | L. Damascelli, R. Pardo, A priori estimates for some elliptic equations involving the $p$-Laplacian, Nonlinear Anal. Real, 41 (2018), 475-496. doi: 10.1016/j.nonrwa.2017.11.003 |
[17] | L. Damascelli, B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of $m$-Laplace equations, J. Differ. Equations, 206 (2004), 483-515. doi: 10.1016/j.jde.2004.05.012 |
[18] | L. Damascelli, B. Sciunzi, Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-laplace equations, Calc. Var., 25 (2006), 139-159. doi: 10.1007/s00526-005-0337-6 |
[19] | D. G. de Figueiredo, P. L. Lions, R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pure. Appl., 61 (1982), 41-63. |
[20] | M. Degiovanni, P. Magrone, Linking solutions for quasilinear equations at critical growth involving the "1-Laplace'' operator, Calc. Var., 36 (2009), 591-609. doi: 10.1007/s00526-009-0246-1 |
[21] | F. Demengel, On some nonlinear partial differential equations involving the 1-Laplacian and critical Sobolev exponent, ESAIM Contr. Optim. Calc. Var., 4 (1999), 667-686. doi: 10.1051/cocv:1999126 |
[22] | F. Demengel, Functions locally almost 1-harmonic, Appl. Anal., 83 (2004), 865-896. doi: 10.1080/00036810310001621369 |
[23] | E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. doi: 10.1016/0362-546X(83)90061-5 |
[24] | F. Esposito, L. Montoro, B. Sciunzi, Monotonicity and symmetry of singular solutions to quasilinear problems, J. Math. Pure. Appl., 126 (2019), 214-231. doi: 10.1016/j.matpur.2018.09.005 |
[25] | L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Boca Raton: CRC Press, 1992. |
[26] | H. Federer, W. Fleming, Normal and integral currents, Ann. Math., 72 (1960), 458-520. doi: 10.2307/1970227 |
[27] | B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Part. Diff. Eq., 6 (1981), 883-901. doi: 10.1080/03605308108820196 |
[28] | B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125 |
[29] | M. Guedda, L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902. doi: 10.1016/0362-546X(89)90020-5 |
[30] | B. Kawohl, F. Schuricht, Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem, Commun. Contemp. Math., 9 (2007), 515-543. doi: 10.1142/S0219199707002514 |
[31] | G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3 |
[32] | P. Lindqvist, On the equation $div(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u = 0$, P. Am. Math. Soc., 109 (1990), 157-164. |
[33] | A. Mercaldo, S. Segura de León, C. Trombetti, On the behaviour of the solutions to p-Laplacian equations as p goes to 1, Publ. Mat., 52 (2008), 377-411. doi: 10.5565/PUBLMAT_52208_07 |
[34] | A. Mercaldo, S. Segura de León, C. Trombetti, On the solutions to 1-Laplacian equation with $L^1$ data, J. Funct. Anal., 256 (2009), 2387-2416. doi: 10.1016/j.jfa.2008.12.025 |
[35] | A. M. Salas, S. Segura de León, Elliptic equations involving the 1-Laplacian and a subcritical source term, Nonlinear Anal., 168 (2018), 50-66. doi: 10.1016/j.na.2017.11.006 |
[36] | C. Scheven, T. Schmidt, BV supersolutions to equations of 1-Laplace and minimal surface type, J. Differ. Equations, 261 (2016), 1904-1932. doi: 10.1016/j.jde.2016.04.015 |
[37] | J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43 (1971), 304-318. doi: 10.1007/BF00250468 |
[38] | G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189-257. doi: 10.5802/aif.204 |
[39] | G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372. doi: 10.1007/BF02418013 |
[40] | P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126-150. doi: 10.1016/0022-0396(84)90105-0 |
[41] | W. P. Ziemer, Weakly differentiable functions, New York: Springer, 1989. |