In this paper, we consider the symmetry properties of the positive solutions of a $ p $-Laplacian problem of the form
$ \begin{eqnarray*} \begin{cases} -{{\Delta}}_p u = f(x,u),\ \ \ \ \ \ \ \mathrm{in}\ \ \ \ \ {{\Omega}},\\ \ \ \ \ \ \ \ u = g(x), \ \ \ \ \ \ \ \ \ \ \mathrm{on}\ \ \ \ \partial{{\Omega}}, \end{cases} \end{eqnarray*} $
where $ {{\Omega}} $ is an open smooth bounded domain in $ R^N, N\geq2 $, and symmetric w.r.t. the hyperplane $ T_0^\nu (\nu $ is a direction vector in $ R^N, |\nu| = 1 $$) $, $ f $: $ {{\Omega}}\times R^+\rightarrow R^+ $ is a continuous function of class $ C^1 $ w.r.t. the second variable, $ g\geq 0 $ is continuous, and both $ f $ and $ g $ are symmetric w.r.t. $ T^\nu_0 $, respectively. Introducing some assumptions on nonlinearities, we get that the positive solutions of the problem above are symmetric w.r.t. the direction $ \nu $ by a new simple idea even if $ {{\Omega}} $ is not convex in the direction $ \nu $.
Citation: Keqiang Li, Shangjiu Wang. Symmetry of positive solutions of a $ p $-Laplace equation with convex nonlinearites[J]. AIMS Mathematics, 2023, 8(6): 13425-13431. doi: 10.3934/math.2023680
In this paper, we consider the symmetry properties of the positive solutions of a $ p $-Laplacian problem of the form
$ \begin{eqnarray*} \begin{cases} -{{\Delta}}_p u = f(x,u),\ \ \ \ \ \ \ \mathrm{in}\ \ \ \ \ {{\Omega}},\\ \ \ \ \ \ \ \ u = g(x), \ \ \ \ \ \ \ \ \ \ \mathrm{on}\ \ \ \ \partial{{\Omega}}, \end{cases} \end{eqnarray*} $
where $ {{\Omega}} $ is an open smooth bounded domain in $ R^N, N\geq2 $, and symmetric w.r.t. the hyperplane $ T_0^\nu (\nu $ is a direction vector in $ R^N, |\nu| = 1 $$) $, $ f $: $ {{\Omega}}\times R^+\rightarrow R^+ $ is a continuous function of class $ C^1 $ w.r.t. the second variable, $ g\geq 0 $ is continuous, and both $ f $ and $ g $ are symmetric w.r.t. $ T^\nu_0 $, respectively. Introducing some assumptions on nonlinearities, we get that the positive solutions of the problem above are symmetric w.r.t. the direction $ \nu $ by a new simple idea even if $ {{\Omega}} $ is not convex in the direction $ \nu $.
[1] | J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43 (1971), 304–318. https://doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468 |
[2] | B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in $R^{n}$, Adv. Math. Suppl. Stud., 7 (1981), 369–402. |
[3] | B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209–243. https://doi.org/10.1007/BF01221125 doi: 10.1007/BF01221125 |
[4] | H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., 22 (1991), 1–37. https://doi.org/10.1007/BF01244896 doi: 10.1007/BF01244896 |
[5] | L. Damascelli, F. Pacella, Monotonicity and symmetry of solutions of $p$-Laplace equations, $1 < p < 2$, via the moving plane method, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 689–707. |
[6] | L. Damascelli, F. Pacella, Monotonicity and symmetry results for $p$-Laplace equations and applications, Adv. Differ. Equations, 5 (2000), 1179–1200. https://doi.org/10.57262/ade/1356651297 doi: 10.57262/ade/1356651297 |
[7] | L. Damascelli, F. Pacella, M. Ramaswamy, Symmetry of ground states of $p$-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal., 148 (1999), 291–308. https://doi.org/10.1007/s002050050163 doi: 10.1007/s002050050163 |
[8] | J. Serrin, H. Zou, Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal., 148 (1999), 265–290. https://doi.org/10.1007/s002050050162 doi: 10.1007/s002050050162 |
[9] | J. M. do Ó, R. da Costa, Symmetry properties for nonnegative solutions of non-uniformally elliptic equations in hyperbolic spaces, J. Math. Anal. Appl., 435 (2016), 1753–1711. https://doi.org/10.1016/j.jmaa.2015.11.031 doi: 10.1016/j.jmaa.2015.11.031 |
[10] | F. Pacella, Symmetry resluts for solutions of semilinear elliptic equations with convex nonlinearities, J. Funct. Anal., 1992 (2002), 271–282. https://doi.org/10.1006/jfan.2001.3901 doi: 10.1006/jfan.2001.3901 |
[11] | O. A. Ladyzhenskaya, Linear and quasilinear elliptic equations, New York: Academic Press, 1968. |
[12] | J. Simon, Régularité de la solution d'un problème aux limites non linéaires, Ann. Fac. Sci. Toulouse, 3 (1981), 247–274. https://doi.org/10.5802/AFST.569 doi: 10.5802/AFST.569 |
[13] | L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493–516. https://doi.org/10.1016/S0294-1449(98)80032-2 doi: 10.1016/S0294-1449(98)80032-2 |
[14] | M. Badiale, E. Nabana, A note on radiality of solutions of $p$-Laplacian, Appl. Anal., 52 (1994), 35–43. https://doi.org/10.1080/00036819408840222 doi: 10.1080/00036819408840222 |