In this paper, we establish some congruences mod $ p^3 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l} $, where $ p > 3 $ is a prime number and $ B_{p, k} $ are generalized Catalan numbers. We also establish some congruences mod $ p^2 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l_1}B_{p, k-d}^{2l_2} $, where $ m, l_1, l_2, d $ are positive integers and $ 1\leq d\leq p-1 $.
Citation: Jizhen Yang, Yunpeng Wang. Congruences involving generalized Catalan numbers and Bernoulli numbers[J]. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240
In this paper, we establish some congruences mod $ p^3 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l} $, where $ p > 3 $ is a prime number and $ B_{p, k} $ are generalized Catalan numbers. We also establish some congruences mod $ p^2 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l_1}B_{p, k-d}^{2l_2} $, where $ m, l_1, l_2, d $ are positive integers and $ 1\leq d\leq p-1 $.
[1] | E. Deutsch, L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241–265. http://dx.doi.org/10.1016/S0012-365X(01)00121-2 doi: 10.1016/S0012-365X(01)00121-2 |
[2] | L. Elkhiri, S. Koparal, N. Ömür, New congruences with the generalized Catalan numbers and harmonic numbers, Bull. Korean Math. Soc., 58 (2021), 1079–1095. http://dx.doi.org/10.4134/BKMS.b200359 doi: 10.4134/BKMS.b200359 |
[3] | J. W. L. Glaisher, On the residues of the sums of products of the first $p-1$ numbers and their powers, to modulus $p^2$ or $p^3$, Quarterly J. Math., 31 (1900), 321–353. |
[4] | H. W. Gould, Combinatorial Identity, New York: Morgantown Printing and Binding Co., 1972. |
[5] | J. W. Guo, J. Zeng, Factors of binomial sums from the Catalan triangle, J. Number Theory, 130 (2010), 172–186. http://dx.doi.org/10.1016/j.jnt.2009.07.005 doi: 10.1016/j.jnt.2009.07.005 |
[6] | P. Hilton, J. Pedersen, Catalan numbers, their generalization, and their uses, Math. Intell., 13 (1991), 64–75. http://dx.doi.org/10.1007/BF03024089 doi: 10.1007/BF03024089 |
[7] | K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory (Graduate Texts in Math., 84), $2^{ed}$, New York: Springer-Verlag, 1990. http://dx.doi.org/10.1007/978-1-4757-1779-2 |
[8] | D. S. Kim, T. Kim, A new approach to Catalan numbers using differential equations, Russ. J. Math. Phys., 24 (2017), 465–475. http://dx.doi.org/10.1134/S1061920817040057 doi: 10.1134/S1061920817040057 |
[9] | T. Kim, D. S. Kim, Some identities of Catalan-Daehee polynomials arising from umbral calculus, Appl. Comput. Math., 16 (2017), 177–189. |
[10] | S. Koparal, N. Ömür, On congruences involving the generalized Catalan numbers and harmonic numbers, Bull. Korean Math. Soc., 56 (2019), 649–658. http://dx.doi.org/10.4134/BKMS.b180454 doi: 10.4134/BKMS.b180454 |
[11] | G. Mao, On sums of binomial coefficients involving Catalan and Delannoy numbers modulo $p^2$, Ramanujan J., 45 (2017), 319–330. http://dx.doi.org/10.1007/s11139-016-9853-6 doi: 10.1007/s11139-016-9853-6 |
[12] | Y. Matiyasevich, Identities with Bernoulli numbers, 1997. Available from: https://logic.pdmi.ras.ru/yumat/Journal/Bernoulli/bernulli.htm. |
[13] | R. Meštrović, Proof of a congruence for harmonic numbers conjectured by Z.-W. Sun, Int. J. Number Theory, 8 (2012), 1081–1085. http://dx.doi.org/10.1142/S1793042112500649 doi: 10.1142/S1793042112500649 |
[14] | N. Ömür, S. Koparal, Some congruences involving numbers $B(p, k-d)$, Util. Math., 95 (2014), 307–317. |
[15] | L. W. Shapiro, A Catalan triangle, Discrete Math., 14 (1976), 83–90. http://dx.doi.org/10.1016/0012-365X(76)90009-1 doi: 10.1016/0012-365X(76)90009-1 |
[16] | Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140 (2012), 415–428. http://dx.doi.org/10.1090/S0002-9939-2011-10925-0 doi: 10.1090/S0002-9939-2011-10925-0 |
[17] | Z. W. Sun, L. Zhao, Arithmetic theory of harmonic numbers (Ⅱ), Colloq. Math., 130 (2013), 67–78. http://dx.doi.org/10.4064/cm130-1-7 doi: 10.4064/cm130-1-7 |
[18] | Y. Wang, J. Yang, Modulo $p^2$ congruences involving harmonic numbers, Ann. Polon. Math., 121 (2018), 263–278. http://dx.doi.org/10.4064/ap180401-12-9 doi: 10.4064/ap180401-12-9 |
[19] | Y. Wang, J. Yang, Modulo $p^2$ congruences involving generalized harmonic numbers, Bull. Malays. Math. Sci. Soc., 44 (2021), 1799–1812. http://dx.doi.org/10.1007/s40840-020-01032-4 doi: 10.1007/s40840-020-01032-4 |
[20] | J. Wolstenholme, On certain properties of prime numbers, Quart. J. Math., 5 (1862), 35–39. |
[21] | J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4 (2008), 73–106. http://dx.doi.org/10.1142/S1793042108001146 doi: 10.1142/S1793042108001146 |