In this paper, we introduce a new hybrid relaxed iterative algorithm with two half-spaces to solve the fixed-point problem and split-feasibility problem involving demicontractive mappings. The strong convergence of the iterative sequence produced by our algorithm is proved under certain weak conditions. We give several numerical experiments to demonstrate the efficiency of the proposed iterative method in comparison with previous algorithms.
Citation: Yuanheng Wang, Bin Huang, Bingnan Jiang, Tiantian Xu, Ke Wang. A general hybrid relaxed CQ algorithm for solving the fixed-point problem and split-feasibility problem[J]. AIMS Mathematics, 2023, 8(10): 24310-24330. doi: 10.3934/math.20231239
In this paper, we introduce a new hybrid relaxed iterative algorithm with two half-spaces to solve the fixed-point problem and split-feasibility problem involving demicontractive mappings. The strong convergence of the iterative sequence produced by our algorithm is proved under certain weak conditions. We give several numerical experiments to demonstrate the efficiency of the proposed iterative method in comparison with previous algorithms.
[1] | Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692 |
[2] | Y. Yao, M. Postolache, X. Qin, J. Yao, Iterative algorithms for the proximal split feasibility problem, U. P. B. Sci. Bull. A, 80 (2018), 37–44. |
[3] | A. E. Al-Mazrooei, A. Latif, X. Qin, J. C. Yao, Fixed point algorithms for split feasibility problems, Fixed Point Theor., 20 (2019), 245–254. https://doi.org/10.24193/fpt-ro.2019.1.16 doi: 10.24193/fpt-ro.2019.1.16 |
[4] | Q. Dong, S. He, Y. Zhao, On global convergence rate of two acceleration projection algorithms for solving the multiple-sets split feasibility problem, Filomat, 30 (2016), 3243–3252. https://doi.org/10.2298/FIL1612243D doi: 10.2298/FIL1612243D |
[5] | J. Zhao, D. Hou, A self-adaptive iterative algorithm for the split common fixed problems, Numer Algor., 82 (2019), 1047–1063. https://doi.org/10.1007/s11075-018-0640-x doi: 10.1007/s11075-018-0640-x |
[6] | D. Hou, J. Zhao, X. Wang, Weak convergence of a primal-dual algorithm for split common fixed-point problems in Hilbert spaces, J. Appl. Numer. Optim., 2 (2020), 187–197. |
[7] | C. Byrne, Iterative oblique projection onto convex set and the split feasibility problem, Inverse Probl., 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310 |
[8] | C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006 |
[9] | G. López, V. Martín-Márquez, F. Wang, H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28 (2012), 085004. https://doi.org/10.1088/0266-5611/28/8/085004 doi: 10.1088/0266-5611/28/8/085004 |
[10] | M. Fukushima, A relaxed projection method for variational inequalities, Math. Program., 35 (1986), 58–70. https://doi.org/10.1007/BF01589441 doi: 10.1007/BF01589441 |
[11] | Q. Yang, The relaxed CQ algorithm for solving the split feasibility problem, Inverse Probl., 20 (2004), 1261–1266. https://doi.org/10.1088/0266-5611/20/4/014 doi: 10.1088/0266-5611/20/4/014 |
[12] | X. Qin, L. Wang, A fixed point method for solving a split feasibility problem in Hilbert spaces, RACSAM, 13 (2019), 215–325. https://doi.org/10.1007/s13398-017-0476-6 doi: 10.1007/s13398-017-0476-6 |
[13] | Y. H. Wang, T. T. Xu, J. C. Yao, B. N. Jiang, Self-adaptive method and inertial modification for solving the split feasibility problem and fixed-point problem of quasi-nonexpansive mapping, Mathematics, 10 (2022), 1612. https://doi.org/10.3390/math10091612 doi: 10.3390/math10091612 |
[14] | M. Tian, A general iterative algorithm for nonexpansive mapping in Hilbert spaces, Nonlinear Anal., 73 (2010), 689–694. https://doi.org/10.1016/j.na.2010.03.058 doi: 10.1016/j.na.2010.03.058 |
[15] | L. J. Kwari, J. Sunday, J. N. Ndam, A. Shokri, Y. Wang, On the Simulations of Second-Order Oscillatory Problems with Applications to Physical Systems, Axioms, 12 (2013), 282. https://doi.org/10.2139/ssrn.4183287 https://doi.org/10.3390/axioms12030282 |
[16] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert space, New York: Springer, 2011. |
[17] | S. Kesornprom, N. Pholasa, P. Cholamjiak, On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem, Numer. Alogr., 84 (2020), 997–1017. https://doi.org/10.1007/s11075-019-00790-y doi: 10.1007/s11075-019-00790-y |
[18] | S. Suantai, S. Kesornprom, N. Pholasa, Y. J. Cho, P. Cholamjiak, A relaxed projections method using a new linesearch for the split feasibility problem, AIMS Mathematics, 6 (2021), 2690–2703. |
[19] | Y. H. Wang, M. Y. Yuan, B. N. Jiang, Multi-step inertial hybrid and shrinking Tseng's algorithm with Meir-Keeler contractions for variational inclusion problems, Mathematics, 9 (2021), 1548. https://doi.org/10.3390/math9131548 doi: 10.3390/math9131548 |
[20] | W. L. Sun, G. Lu, Y. F. Jin, C. Park, Self-adaptive algorithms for the split problem of the quasi-pseudocontractive operators in Hilbert spaces, AIMS Mathematics, 7 (2022), 8715–8732. https://doi.org/10.3934/math.2022487 doi: 10.3934/math.2022487 |
[21] | D. V. Thong, Viscosity approximation methods for solving fixed point problems and split common fixed point problems, J. Fixed Point Theory Appl., 19 (2017), 1481–1499. https://doi.org/10.1007/s11784-016-0323-y doi: 10.1007/s11784-016-0323-y |
[22] | S. He, C. Yang, Solving the variational inequality problem defined on intersection of finite level sets, Abstr. Appl. Anal., 2013 (2013), 942315. https://doi.org/10.1155/2013/942315 doi: 10.1155/2013/942315 |
[23] | M. Tian, M. Tong, Self-adaptive subgradient extragradient method with inertial modification for solving monotone variational inequality problems and quasi-nonexpansive fixed point problems, J. Inequal. Appl., 2019 (2019), 7. https://doi.org/10.1186/s13660-019-1958-1 doi: 10.1186/s13660-019-1958-1 |