Citation: Jamilu Abubakar, Poom Kumam, Jitsupa Deepho. Multistep hybrid viscosity method for split monotone variational inclusion and fixed point problems in Hilbert spaces[J]. AIMS Mathematics, 2020, 5(6): 5969-5992. doi: 10.3934/math.2020382
[1] | J. Deepho, P. Thounthong, P. Kumam, et al. A new general iterative scheme for split variational inclusion and fixed point problems of k-strict pseudo-contraction mappings with convergence analysis, J. Comput. Appl. Math., 318 (2017), 293-306. doi: 10.1016/j.cam.2016.09.009 |
[2] | Y. Yao, Y. C. Liou, R. Chen, Convergence theorems for fixed point problems and variational inequality problems in Hilbert spaces, Math. Nachr., 282 (2009), 1827-1835. doi: 10.1002/mana.200610817 |
[3] | H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279-291. doi: 10.1016/j.jmaa.2004.04.059 |
[4] | Y. Yao, M. A. Noor, K. I. Noor, et al. Modified extragradient methods for a system of variational inequalities in Banach spaces, Acta Appl. Math., 110 (2010), 1211-1224. doi: 10.1007/s10440-009-9502-9 |
[5] | Y. Yao, S. Maruster, Strong convergence of an iterative algorithm for variational inequalities in Banach spaces, Math. Comput. Model., 54 (2011), 325-329. doi: 10.1016/j.mcm.2011.02.016 |
[6] | T. Seangwattana, S. Plubtieng, T. Yuying, An extragradient method without monotonicty, Thai Journal of Mathematics, 18 (2020), 94-103. |
[7] | P. E. Mainge, A. Moudafi, Strong convergence of an iterative method for hierarchical fixed-points problems, Pac. J. Optim., 3 (2007), 529-538. |
[8] | A. Moudafi, P. E. Mainge, Towards viscosity approximations of hierarchical fixed-point problems, Fixed Point Theory Appl., 2006 (2006), 95453. |
[9] | Y. Yao, Y. C. Liou, G. Marino, Two-step iterative algorithms for hierarchical fixed point problems and variational inequality problems, J. Appl. Math. Comput., 31 (2009), 433-445. doi: 10.1007/s12190-008-0222-5 |
[10] | G. Marino, L. Muglia, Y. Yao, Viscosity methods for common solutions of equilibrium and variational inequality problems via multi-step iterative algorithms and common fixed points, Nonlinear Anal., 75 (2012), 1787-1798. doi: 10.1016/j.na.2011.09.019 |
[11] | L. C. Ceng, Q. H. Ansari, J. C. Yao, Iterative methods for triple hierarchical variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 151 (2011), 489-512. doi: 10.1007/s10957-011-9882-7 |
[12] | Z. Q. Luo, J. S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, New York, 1996. |
[13] | J. Outrata, M. Kocvara, J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Kluwer Academic Press, Dordrecht, 1998. |
[14] | H. Iiduka, Strong convergence for an iterative method for the triple-hierarchical constrained optimization problem, Nonlinear Anal., 71 (2009), 1292-1297. doi: 10.1016/j.na.2009.01.133 |
[15] | H. Iiduka, Iterative algorithm for solving triple-hierarchical constrained optimization problem, J. Optim. Theory Appl., 148 (2011), 580-592. doi: 10.1007/s10957-010-9769-z |
[16] | T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 2005 (2005), 685918. |
[17] | K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5 (2001), 387-404. doi: 10.11650/twjm/1500407345 |
[18] | Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323. doi: 10.1007/s11075-011-9490-5 |
[19] | P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Phys., 95 (1996), 155-453. doi: 10.1016/S1076-5670(08)70157-5 |
[20] | A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283. doi: 10.1007/s10957-011-9814-6 |
[21] | C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 441-453. doi: 10.1088/0266-5611/18/2/310 |
[22] | K. R. Kazmi, S. H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8 (2014), 1113-1124. doi: 10.1007/s11590-013-0629-2 |
[23] | H. K. Xu, T. H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl., 119 (2013), 185-201. |
[24] | Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591-597. doi: 10.1090/S0002-9904-1967-11761-0 |
[25] | L. C. Ceng, A. Petrusel, J. C. Yao, Strong convergence theorem of averaging iterations of nonexpansive nonself-mapping in Banach space, Fixed Point Theory., 8 (2007), 219-236. |
[26] | Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239. doi: 10.1007/BF02142692 |
[27] | Y. Censor, T. Bortfeld, B. Martin, et al. A unified approach for inversion problems in intensitymodulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365. doi: 10.1088/0031-9155/51/10/001 |
[28] | K. Geobel, W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990. |
[29] | C. E. Chidume, S. Maruster, Iterativemethods for the computation of fixed points of demicontractivemappings, J. Comput. Appl. Math., 234 (2010), 861-882. doi: 10.1016/j.cam.2010.01.050 |