Research article

Multistep hybrid viscosity method for split monotone variational inclusion and fixed point problems in Hilbert spaces

  • Received: 27 April 2020 Accepted: 08 July 2020 Published: 22 July 2020
  • MSC : 47H05, 47H10, 47J22, 49J40

  • In this paper, we present a multi-step hybrid iterative method. It is proven that under appropriate assumptions, the proposed iterative method converges strongly to a common element of fixed point of a finite family of nonexpansive mappings, the solution set of split monotone variational inclusion problem and the solution set of triple hierarchical variational inequality problem (THVI) in real Hilbert spaces. In addition, we give a numerical example of a triple hierarchical system derived from our generalization.

    Citation: Jamilu Abubakar, Poom Kumam, Jitsupa Deepho. Multistep hybrid viscosity method for split monotone variational inclusion and fixed point problems in Hilbert spaces[J]. AIMS Mathematics, 2020, 5(6): 5969-5992. doi: 10.3934/math.2020382

    Related Papers:

  • In this paper, we present a multi-step hybrid iterative method. It is proven that under appropriate assumptions, the proposed iterative method converges strongly to a common element of fixed point of a finite family of nonexpansive mappings, the solution set of split monotone variational inclusion problem and the solution set of triple hierarchical variational inequality problem (THVI) in real Hilbert spaces. In addition, we give a numerical example of a triple hierarchical system derived from our generalization.


    加载中


    [1] J. Deepho, P. Thounthong, P. Kumam, et al. A new general iterative scheme for split variational inclusion and fixed point problems of k-strict pseudo-contraction mappings with convergence analysis, J. Comput. Appl. Math., 318 (2017), 293-306. doi: 10.1016/j.cam.2016.09.009
    [2] Y. Yao, Y. C. Liou, R. Chen, Convergence theorems for fixed point problems and variational inequality problems in Hilbert spaces, Math. Nachr., 282 (2009), 1827-1835. doi: 10.1002/mana.200610817
    [3] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279-291. doi: 10.1016/j.jmaa.2004.04.059
    [4] Y. Yao, M. A. Noor, K. I. Noor, et al. Modified extragradient methods for a system of variational inequalities in Banach spaces, Acta Appl. Math., 110 (2010), 1211-1224. doi: 10.1007/s10440-009-9502-9
    [5] Y. Yao, S. Maruster, Strong convergence of an iterative algorithm for variational inequalities in Banach spaces, Math. Comput. Model., 54 (2011), 325-329. doi: 10.1016/j.mcm.2011.02.016
    [6] T. Seangwattana, S. Plubtieng, T. Yuying, An extragradient method without monotonicty, Thai Journal of Mathematics, 18 (2020), 94-103.
    [7] P. E. Mainge, A. Moudafi, Strong convergence of an iterative method for hierarchical fixed-points problems, Pac. J. Optim., 3 (2007), 529-538.
    [8] A. Moudafi, P. E. Mainge, Towards viscosity approximations of hierarchical fixed-point problems, Fixed Point Theory Appl., 2006 (2006), 95453.
    [9] Y. Yao, Y. C. Liou, G. Marino, Two-step iterative algorithms for hierarchical fixed point problems and variational inequality problems, J. Appl. Math. Comput., 31 (2009), 433-445. doi: 10.1007/s12190-008-0222-5
    [10] G. Marino, L. Muglia, Y. Yao, Viscosity methods for common solutions of equilibrium and variational inequality problems via multi-step iterative algorithms and common fixed points, Nonlinear Anal., 75 (2012), 1787-1798. doi: 10.1016/j.na.2011.09.019
    [11] L. C. Ceng, Q. H. Ansari, J. C. Yao, Iterative methods for triple hierarchical variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 151 (2011), 489-512. doi: 10.1007/s10957-011-9882-7
    [12] Z. Q. Luo, J. S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, New York, 1996.
    [13] J. Outrata, M. Kocvara, J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Kluwer Academic Press, Dordrecht, 1998.
    [14] H. Iiduka, Strong convergence for an iterative method for the triple-hierarchical constrained optimization problem, Nonlinear Anal., 71 (2009), 1292-1297. doi: 10.1016/j.na.2009.01.133
    [15] H. Iiduka, Iterative algorithm for solving triple-hierarchical constrained optimization problem, J. Optim. Theory Appl., 148 (2011), 580-592. doi: 10.1007/s10957-010-9769-z
    [16] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 2005 (2005), 685918.
    [17] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5 (2001), 387-404. doi: 10.11650/twjm/1500407345
    [18] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323. doi: 10.1007/s11075-011-9490-5
    [19] P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Phys., 95 (1996), 155-453. doi: 10.1016/S1076-5670(08)70157-5
    [20] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283. doi: 10.1007/s10957-011-9814-6
    [21] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 441-453. doi: 10.1088/0266-5611/18/2/310
    [22] K. R. Kazmi, S. H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8 (2014), 1113-1124. doi: 10.1007/s11590-013-0629-2
    [23] H. K. Xu, T. H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl., 119 (2013), 185-201.
    [24] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591-597. doi: 10.1090/S0002-9904-1967-11761-0
    [25] L. C. Ceng, A. Petrusel, J. C. Yao, Strong convergence theorem of averaging iterations of nonexpansive nonself-mapping in Banach space, Fixed Point Theory., 8 (2007), 219-236.
    [26] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239. doi: 10.1007/BF02142692
    [27] Y. Censor, T. Bortfeld, B. Martin, et al. A unified approach for inversion problems in intensitymodulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365. doi: 10.1088/0031-9155/51/10/001
    [28] K. Geobel, W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990.
    [29] C. E. Chidume, S. Maruster, Iterativemethods for the computation of fixed points of demicontractivemappings, J. Comput. Appl. Math., 234 (2010), 861-882. doi: 10.1016/j.cam.2010.01.050
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3473) PDF downloads(268) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog