The main object of this article is to present type 2 degenerate poly-Bernoulli polynomials of the second kind and numbers by arising from modified degenerate polyexponential function and investigate some properties of them. Thereafter, we treat the type 2 degenerate unipoly-Bernoulli polynomials of the second kind via modified degenerate polyexponential function and derive several properties of these polynomials. Furthermore, some new identities and explicit expressions for degenerate unipoly polynomials related to special numbers and polynomials are obtained. In addition, certain related beautiful zeros and graphical representations are displayed with the help of Mathematica.
Citation: Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal. A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties[J]. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731
The main object of this article is to present type 2 degenerate poly-Bernoulli polynomials of the second kind and numbers by arising from modified degenerate polyexponential function and investigate some properties of them. Thereafter, we treat the type 2 degenerate unipoly-Bernoulli polynomials of the second kind via modified degenerate polyexponential function and derive several properties of these polynomials. Furthermore, some new identities and explicit expressions for degenerate unipoly polynomials related to special numbers and polynomials are obtained. In addition, certain related beautiful zeros and graphical representations are displayed with the help of Mathematica.
[1] | L. Carlitz, Degenerate stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88. |
[2] | L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), 28–33. doi: 10.1007/BF01900520 |
[3] | D. V. Dolgy, W. A. Khan, A note on type two degenerate poly-Changhee polynomials of the second kind, Symmetry, 13 (2021), 579. doi: 10.3390/sym13040579 |
[4] | W.A. Khan, A new class of degenerate Frobenius-Euler-Hermite polynomials, Adv. Stud. Contemp. Math., 28 (2018), 567–576. |
[5] | W. A. Khan, M. Acikgoz, U. Duran, Note on the type 2 degenerate multi-poly-Euler polynomials, Symmetry, 12 (2020), 1691. doi: 10.3390/sym12101691 |
[6] | W. A. Khan, R. Ali, K. A. H. Alzobydi, N. Ahmed, A new family of degenerate poly-Genocchi polynomials with its certain properties, J. Funct. Spaces, 2021 (2021), 6660517. |
[7] | D. S. Kim, T. Kim, A note on polyexponential and unipoly functions, Russ. J. Math. Phys., 26 (2019), 40–49. doi: 10.1134/S1061920819010047 |
[8] | T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331. |
[9] | T. Kim, L. C. Jang, D. S. Kim, H. Y. Kim, Some identities on type 2 degenerate Bernoulli polynomials of the second kind, Symmetry, 12 (2020), 510. doi: 10.3390/sym12040510 |
[10] | T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 124017. doi: 10.1016/j.jmaa.2020.124017 |
[11] | D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys. 27 (2020), 227–235. |
[12] | T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24 (2017), 241–248. doi: 10.1134/S1061920817020091 |
[13] | T. Kim, H. I. Kwon, S. H. Lee, J. J. Seo, A note on poly-Bernoulli polynomials of the second kind, Adv. Differ. Equ., 2014 (2014), 119. doi: 10.1186/1687-1847-2014-119 |
[14] | T. Kim, D. S. Kim, J. Kwon, H. Y. Kim, A note on degenerate Genocchi and poly-Genocchi numbers and polynomials, J. Inequal. Appl., 2020 (2020), 110. doi: 10.1186/s13660-020-02378-w |
[15] | T. Kim, D. S. Kim, H. Y. Kim, J. Kwon, Some results on degenerate Daehee and Bernoulli numbers and polynomials, Adv. Diff. Equ. 2020 (2020), 311. |
[16] | T. Kim, D. S. Kim, D. V. Dolgy, S. H. Lee, J. Kwon, Some identities of the higher-order type 2 Bernoulli numbers and polynomials of the second kind, CMES, 2021, DOI: 10.32604/cmes.2021.016532. |
[17] | T. Kim, D. S. Kim, Degenerate zero-truncated poisson random variables, Russ. J. Math. Phys., 28 (2021), 66–72. doi: 10.1134/S1061920821010076 |
[18] | T. Kim, D. S. Kim, J. Kwon, H. Lee, Representations of degenerate poly-Bernoulli polynomials, J. Inequal. Appl., 2021 (2021), 58. doi: 10.1186/s13660-021-02592-0 |
[19] | T. Kim, D. S. Kim, L. C. Jang, H. Lee, H. Kim, Generalized degenerate Bernoulli numbers and polynomials arising from Gauss hypergeometric function, Adv. Difference Equ., 2021 (2021), 175. doi: 10.1186/s13662-021-03337-5 |
[20] | Y. K. Ma, D. S. Kim, H. Lee, H. Kim, T. Kim, Reciprocity of poly-Dedkind-type $DC$ sums involving poly-Euler functions, Adv. Differ. Equ., 2021 (2021), 30. doi: 10.1186/s13662-020-03194-8 |
[21] | T. Komatsu, Hypergeometric degenerate Bernoulli polynomials and numbers, Ars Math. Contemp., 18 (2020), 163–177. doi: 10.26493/1855-3974.1907.3c2 |
[22] | G. Muhiuddin, W. A. Khan, U. Duran, Two variable type 2 Fubini polynomials, Mathematics, 9 (2021), 281. doi: 10.3390/math9030281 |
[23] | G. Muhiuddin, W. A. Khan, U. Duran, D. Al-Kadi, Some identities of the multi-poly-Bernoulli polynomials of complex variable, J. Funct. Spaces, 9 (2021), 7172054. |
[24] | G. Muhiuddin, W. A. Khan, A. Muhyi, D. Al-Kadi, Some results on type 2 degenerate poly-Fubini polynomials and numbers, CMES, 2021, DOI: 10.32604/cmes.2021.016546. |
[25] | C. S. Ryoo, W. A. Khan, On two bivariate kinds of poly-Bernoulli and poly-Genocchi polynomials, Mathematics, 8 (2020), 417. doi: 10.3390/math8030417 |
[26] | S. K. Sharma, W. A. Khan, C. S. Ryoo, A parametric kind of the degenerate Fubini numbers and polynomials, Mathematics, 8 (2020), 405. doi: 10.3390/math8030405 |
[27] | S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New type of degenerate Daehee polynomials of the second kind, Adv. Differ. Equ., 2020 (2020), 428. doi: 10.1186/s13662-020-02891-8 |
[28] | S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New construction of type 2 degenerate central Fubini polynomials with their certain properties, Adv. Differ. Equ., 2020 (2020), 587. doi: 10.1186/s13662-020-03055-4 |