Research article

On the reflexive edge strength of the circulant graphs

  • Received: 04 March 2021 Accepted: 11 June 2021 Published: 23 June 2021
  • MSC : 05C78, 05C12, 05C90

  • A labeling of a graph is an assignment that carries some sets of graph elements into numbers (usually the non negative integers). The total k-labeling is an assignment fe from the edge set to the set {1,2,...,ke} and assignment fv from the vertex set to the set {0,2,4,...,2kv}, where k=max{ke,2kv}. An edge irregular reflexive k-labeling of the graph G is the total k-labeling, if distinct edges have distinct weights, where the edge weight is defined as the sum of label of that edge and the labels of the end vertices. The minimum k for which the graph G has an edge irregular reflexive k-labeling is called the reflexive edge strength of the graph G, denoted by res(G). In this paper we study the edge reflexive irregular k-labeling for some cases of circulant graphs and determine the exact value of the reflexive edge strength for several classes of circulant graphs.

    Citation: Mohamed Basher. On the reflexive edge strength of the circulant graphs[J]. AIMS Mathematics, 2021, 6(9): 9342-9365. doi: 10.3934/math.2021543

    Related Papers:

    [1] Muhammad Amir Asif, Rashad Ismail, Ayesha Razaq, Esmail Hassan Abdullatif Al-Sabri, Muhammad Haris Mateen, Shahbaz Ali . An application on edge irregular reflexive labeling for $ m^t $-graph of cycle graph. AIMS Mathematics, 2025, 10(1): 1300-1321. doi: 10.3934/math.2025060
    [2] Mohamed Basher . Edge irregular reflexive labeling for the $ r $-th power of the path. AIMS Mathematics, 2021, 6(10): 10405-10430. doi: 10.3934/math.2021604
    [3] Kooi-Kuan Yoong, Roslan Hasni, Gee-Choon Lau, Muhammad Ahsan Asim, Ali Ahmad . Reflexive edge strength of convex polytopes and corona product of cycle with path. AIMS Mathematics, 2022, 7(7): 11784-11800. doi: 10.3934/math.2022657
    [4] Ibrahim Tarawneh, Roslan Hasni, Ali Ahmad, Muhammad Ahsan Asim . On the edge irregularity strength for some classes of plane graphs. AIMS Mathematics, 2021, 6(3): 2724-2731. doi: 10.3934/math.2021166
    [5] Martin Bača, Muhammad Imran, Zuzana Kimáková, Andrea Semaničová-Feňovčíková . A new generalization of edge-irregular evaluations. AIMS Mathematics, 2023, 8(10): 25249-25261. doi: 10.3934/math.20231287
    [6] Ali N. A. Koam, Ali Ahmad, Martin Bača, Andrea Semaničová-Feňovčíková . Modular edge irregularity strength of graphs. AIMS Mathematics, 2023, 8(1): 1475-1487. doi: 10.3934/math.2023074
    [7] Fatma Salama, Randa M. Abo Elanin . On total edge irregularity strength for some special types of uniform theta snake graphs. AIMS Mathematics, 2021, 6(8): 8127-8148. doi: 10.3934/math.2021471
    [8] Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki . Modular total vertex irregularity strength of graphs. AIMS Mathematics, 2023, 8(4): 7662-7671. doi: 10.3934/math.2023384
    [9] Bakhtawar Shaukat, Muhammad Ishaq, Ahtsham Ul Haq . Algebraic invariants of edge ideals of some circulant graphs. AIMS Mathematics, 2024, 9(1): 868-895. doi: 10.3934/math.2024044
    [10] Sadik Delen, Ismail Naci Cangul . Effect of edge and vertex addition on Albertson and Bell indices. AIMS Mathematics, 2021, 6(1): 925-937. doi: 10.3934/math.2021055
  • A labeling of a graph is an assignment that carries some sets of graph elements into numbers (usually the non negative integers). The total k-labeling is an assignment fe from the edge set to the set {1,2,...,ke} and assignment fv from the vertex set to the set {0,2,4,...,2kv}, where k=max{ke,2kv}. An edge irregular reflexive k-labeling of the graph G is the total k-labeling, if distinct edges have distinct weights, where the edge weight is defined as the sum of label of that edge and the labels of the end vertices. The minimum k for which the graph G has an edge irregular reflexive k-labeling is called the reflexive edge strength of the graph G, denoted by res(G). In this paper we study the edge reflexive irregular k-labeling for some cases of circulant graphs and determine the exact value of the reflexive edge strength for several classes of circulant graphs.



    Let G be a connected, simple, and undirected graph with a vertex set V(G) and edge set E(G). In graph theory, graph labeling is a topic that is interesting to study. Graph labelings were introduced for first time by Sedláček in 1963 [32], the various methods for labeling of the edges of graph have been studied by stewart in [33], and then formulated by Kotig and Rosa in [27]. In 1988, Chartrand et al. [20] defined irregular labeling for a graph G. Informally, the irregular labeling defined as follows. Let G(V,E) be a graph, the mapping f:E{1,2,3,...,k} is called irregular k-labeling of G, if every different vertices u and v have distinct weights, that is:

    xVf(ux)yVf(vy).

    The irregularity strength of G, denoted by s(G), is known as the minimum positive natural number k which G has an irregular k-labeling. Therefore, there are many researchers who give certain results of the irregular labeling (see [1,7,9,18,21,22,26,27,32,33,36]). The natural extension of irregularity strength of a graph G, Baća, Jendrol, Miller, and Ryan [11] introduced the other types of irregular labeling based on the total labeling, namely the vertex irregular total k-labeling and edge irregular total k-labeling. Some results on the vertex irregular total k-labeling and edge irregular total k-labeling can be found in [2,3,4,5,8,10,12,13,16,23,28,30]. In [11] Baća et al. defined the concept of edge irregular total k-labeling as a labeling of vertices and edges of G, f:VE{1,2,...,k} such that for any different edges xy, xy have distinct weights i.e. wt(xy)wt(xy) where wt(xy)=f(x)+f(xy)+f(y). The minimum k for which G has an edge irregular total k-labeling is namely the total edge irregularity strength of G, denoted by tes(G). Furthermore, Ryan et al. [31] generalized the concept of edge irregular total k-labeling of a graph to be an edge irregular reflexive k-labeling.

    For a graph G the total k-labeling defined the map fe:E(G){1,2,3,...,ke} and fv:V(G){0,2,4,...,2kv}, where k=max{ke,2kv}. The total k-labeling is called an edge irregular reflexive k-labeling, if for every two distinct edges xy and xy of G, wt(xy)wt(xy), where wt(xy)=fv(x)+fe(xy)+fv(y). The minimum value of k for which such labeling exists is known as the reflexive edge strength of graph G and is denoted by res(G). Over the last years, res(G) has been investigated for different family of graphs (see [6,14,35,38]). The notion of reflexive edge strength was defined in [35]. The following lemma estimate the lower bound of the reflexive edge strength of graph G.

    Lemma 1.1. ([35]) For every graph G,

    res(G){|E(G)|3,               |E(G)|2,3(mod6),|E(G)|3+1,          |E(G)|2,3(mod6).

    Also, Baća et al. [14] suggested the following conjecture:

    Conjecture 1.1. ([14]) Let G be a simple graph with maximum degree =(G). Then:

    res(G)=max{+22,|E(G)|3+r}

    where r=1 for |E(G)|2,3 (mod 6), and zero otherwise.

    The circulant graphs are another important family of graphs that can be used to construct local area networks see [17]. Suppose 1s1s2...smn2, where n and sj, j=1,2,3,...,m are positive numbers. The circulant graph Cn(s1,s2,...,sm) is the graph on vertex set V={x0,x1,...,xn1} and edge set E={xixi+sj:i=0,1,2,...,n1 and j=1,2,...,m} where i+sj is taken modulo n see [15]. It is clear to see that Cn(s1,s2,...,sm) is a r-regular, where r=2m1 if sm=n2 with n(2m1)/2 edges on other hand r=2m with mn edges if sm<n2. The circulant graphs have a large number of applications and uses in telecommunication network VLSI design, parallel and distributed computing. The properties of circulant graphs; such as bipartitness, planarity, Hamiltonicity and colourability have been studied in [19,24,25,29,34,37]. In this paper we investigate the existence of the reflexive edge irregularity strength for some classes of circulant graphs.

    In this section, we discuss the edge irregular reflexive k-labeling for some classes of circulant graphs.

    Theorem 1. Let Cn(1,2), be a circulant graph on n4 vertices. Then

    res(Cn(1,2))={4,                     n=4,5,                     n=5,6,2n3,                n0,2(mod3)andn8,2n3+1,           n1(mod3)andn7.

    Proof. Let Cn(1,2) be a circulant graph with vertex set V(Cn(1,2))={xi:1in} and edge set E(Cn(1,2))={xixi+j:1in,1j2}, where indices are taken modulo n. First note that Cn(1,2) isomorphic to the wheel W3 and so from [22] Ryan proved that res(W3)=4, so res(Cn(1,2))=4. By the same arguments that used in [22], we can find that res(C5(1,2))5 and res(C6(1,2))5. The corresponding labelings for Cn(1,2), n=4,5,6,7,8,9, are shown in Figure 1.

    Figure 1.  The reflexive edge irregular k-labeling of Cn(1,2),n=4,5,6,7,8,9.

    For n10 and based on Lemma 1.1, we show the following lower bound for the circulant Cn(1,2) : res(Cn(1,2))k=2n3 if n0,2 (mod 3) and res(Cn(1,2))k=2n3+1 if n1 (mod 3). Then, to convince our proof we define a total labeling of Cn(1,2) such as:

    f(xi)={0,                     1in3,2k4,                n3+1in2,2k2,                n2+1in2+n3,2k6,                n2+n3+1in.
    f(xixi+1)={i,                                    1in31,2n2n22k42,                        i=n3,2n2n2n34k4+i,                         n3+1in21,2n2n32(k2+k4)+1,               i=n2,2nn22n34k2+3+i,                  n2+1in2+n31,2n2n32(k2+k6)2,              i=n2+n3,n3n24k6+i,                        n2+n3+1in1,2n32k62,                 i=n.
    f(xixi+2)={n31+i,                          1in32,2n2n2n32k4+i,                            n31in3,2nn22n34k41+i,                       n3+1in22and                                           n2n32,2n2n3n22(k2+k4)+3+i,           n21in2,2nn2n34k2+2+i,                      n2+1in2+n32,2n3n3n22(k2+k6)+i,                  n2+n31in2+n3,i4k6,                              n2+n3+1in2and                                          n2n33,wheren is even,2n32n22k6+i,                            n1in.

    Evidently, the vertices of Cn(1,2) labeled with even numbers. Now we will compute the weights of edges under the labeling f:

    The edge set of Cn(1,2) can be split into the eight mutually disjoint subsets, A,18 as follows: \\For 1j2.

    A1={xixi+j:1in3j} the set of all edges which has end vertices labeled with 0.

    A2={xixi+j:n3j+1in3} the set of all edges which has end vertices labeled with 0 and 2k4.

    A3={{xn3+1xn3+2},                                ifn2n3=2.{xixi+j:n3+1in2j,},        ifn2n33

    the set of all edges which has end vertices labeled with 2k4.

    A4={xixi+j:n2+1jin2} the set of all edges which has end vertices labeled with 2k4 and 2k2.

    A5={xixi+j:n2+1in2+n3j} the set of all edges which has end vertices labeled with 2k2.

    A6={xixi+j:n2+n3j+1in2+n3} the set of all edges which has end vertices labeled with 2k2 and 2k6.

    A7={{xn1xn},           ifnis even andn2n3=2.{xixi+j:n2+n3+1inj},    otherwise.

    the set of all edges which has end vertices labeled with 2k6.

    A8={xixi+j:nj+1in} the set of all edges which has end vertices labeled with 0 and 2k6.

    Hence, the edge weights under the labeling f are the following:

    1. The weights of the edges of the set A1, admit the successive integers from the set A1={1,2,...,2n33}.

    2. The weights of the edges of the set A2, admit the successive integers from the set A2={2n2n22,2n2n21,2n2n2}

    3. The weight of the edge of the set A3, admit the integer {2n2n2+1,...,2n2n33},

    4. The weights of the edges of the set A4, admit the successive integers from the set A4={2n2n3+1,2n2n3+2,2n2n3+3}

    5. The weights of the edges of the set A5, admit the successive integers from the set A5={2n2n3+4,...,2n}

    6. The weights of the edges of the set A6, admit the successive integers from the set A6={2n2n32,2n2n31,2n2n3}

    7. The weights of the edges of the set A7, admit the successive integers from the set A7={2n3+1,...,2n2n23}

    8. The weights of the edges of the set A8, admit the successive integers from the set A8={2n32,2n31,2n3}

    This mean that for n10, the edge weights are from the set W={1,2,3,...,2n}. Thus, we can easily see that all integers in W are distinct.

    Theorem 2. Let Cn(1,2,3), be a circulant graph on n6 vertices. Then

    res(Cn(1,2,3))={n,                niseven,n+1,           nisodd.

    Proof. According to the fact that the circulant Cn(1,2,3) has 3n edges if n7, then using the Lemma 1.1, we obtain the lower bound for the circulant Cn(1,2,3) as following: res(Cn(1,2,3))n for n is even and res(Cn(1,2,3))n+1 for n is odd. To prove the equality, it suffices to prove the existence of an optimal total labeling of Cn(1,2,3) such as:

    The corresponding labelings for Cn(1,2,3), n=6,7,8,9,10, are shown in Figure 2. Suppose k=n for n is even and k=n+1 for n is odd. Hence, for n11 we have the following labelings:

    f(xi)={0,                     1in3,2k4+2,           n3+1in2,k,                    n2+1in2+n3,2k8,                n2+n3+1in.
    Figure 2.  The reflexive edge irregular k-labeling of Cn(1,2,3),n=6,7,8,9,10.

    Case 1. If n2n3=2.

    Firstly, for n is even, it is only realizable when n=12, then the Figure 3, shows labelings of vertices and edges along with their weights.

    Figure 3.  A reflexive irregular 12-labeling of C12(1,2,3) and its edge weights.

    Secondly, for n is odd.

    f(xixi+1)={i,                                       1in31,3n32k4+2,                    i=n3,3n34k4+6,                    i=n3+1,3n3k2k4+15,             i=n3+2,2n32k+19+i,                 n3+3i2n3+1,3n3k2k8+11,             i=2n3+2,n34k82+i,                 2n3+3i2n3+4,3n32k85,                    i=n.
    f(xixi+2)={n31+i,                           1in32,2n32k4+4+i,                n31in3,2n3k2k4++15+i,                                n3+1in3+2,3n32k+18+i,                  n3+3i2n3,n3k2k8++11+i,                                 2n3+1i2n3+2,3n34k8+3,                      i=2n3+3,3n32k810+i,               2n3+4in.
    f(xixi+3)={2n33+i,                     1in33andn34,2n32k4+7+i,            n32in31,3n3k+9,                     i=n3,2n3k2k4++17+i,                            n3+1in3+2,4n32k+16+i,              n3+3i2n31,n3k2k8++14+i,                           2n3i2n3+2,n32k85+i,             2n3+3in,

    Case 2. If n2n33

    For 1in2

    f(xixi+1)={i,                                      1in31,3n3n22k47,                         i=n3,3n3n2n34k44+i,           n3+1in21,3n3n3k2k41,                      i=n2.

    For n2+1in

    f(xixi+1)={3n3n3n22k+6+i,              n2+1in2+n31,3n3n3k2k85,                  i=n2+n3,2n3n24k8+i,                        n2+n3+1i2n2,3n32k85,                 i=n.
    f(xixi+2)={n31+i,                     1in32,3n3n2n32k45+i,                 n31in3,3n2n22n34k45+i,                 n3+1in22,3n3n3n2k2k4+1+i,           n21in2,3n2n3n22k+5+i,                    n2+1in2+n32,3n4n3n2k2k83+i,          n2+n31in2+n3,n34k8+i,               n2+n3+1i2n21,3n32n22k84+i,                2n2in.
    f(xixi+3)={2n33+i,                  1in33,3n3n2n32k42+i,                n32in3,3nn23n34k47+i,                n3+1in23and                                    n2n34,3n3n3n2k2k4+4+i,            n22in2,3nn3n22k+3+i,                    n2+1in2+n33,3n4n3n2k2k8+i,                  n2+n32in2+n3,2n22n34k81+i,                 n2+n3+1i2n22,n+3n34n22k82+i,                 2n21in.

    Obviously f is k-labeling and the vertices are labeled with even numbers. For the edge weights of xixi+j,1in,1j3 in Cn(1,2,3) under the labeling f we have:

    In Case 1, the edge set of Cn(1,2,3) can be split into the nine mutually disjoint subsets, A,19 as follows:

    1. A1={xixi+j:1in3j,1j3} the set of all edges which has end vertices labeled with 0.

    2. A2={xixi+j:n3j+1in3,1j2} the set of all edges which has end vertices labeled with 0 and 2k4+2.

    3. A3={xn3+1xn3+2} the set of only one edge which has end vertices labeled with 2k4+2,

    4. A4={xixi+j:n3+3jin3+2,1j2} the set of all edges which has end vertices labeled with 2k4+2 and 2k2.

    5. A5={xixi+j:n3+3i2n3,1j2} the set of all edges which has end vertices labeled with 2k2.

    6. A6={xixi+j:2n3+3ji2n3+2,1j3} the set of all edges which has end vertices labeled with 2k2 and 2k8.

    7. A7={xixi+j:2n3+3i2n3+5j,1j2} the set of all edges which has end vertices labeled with 2k8.

    8. A8={xixi+j:2n3+6ji2n3+5,1j3} the set of all edges which has end vertices labeled with 0 and 2k8.

    9. A9={xn3xn3+3} the set of only edge which has end vertices labeled with 0 and 2k2.

    Thus, we obtain the edge weights as follows:

    1. The weights of the edges of the set A1, admit the successive integers from the set A1={1,2,...,3n36}.

    2. The weights of the edges of the set A2, admit the successive integers from the set A2={3n3+4,...,3n3+8}

    3. The weight of the edge of the set A3, admits the integer {3n3+10},

    4. The weights of the edges of the set A4, admit the successive integers from the set A4={3n3+17,...,2n3+21}

    5. The weights of the edges of the set A5, admit the successive integers from the set A5={3n3+22,...,6n3+15}

    6. The weights of the edges of the set A6, admit the successive integers from the set A6={3n3+11,...,3n3+16}

    7. The weights of the edges of the set A7, admit the successive three integers from the set A7={3n3+1,3n3+2,2n3+3}

    8. The weights of the edges of the set A8, admit the successive integers from the set A8={3n35,...,3n3}

    9. The weight of the edge of the set A9, admit the integer {3n3+9}.

    In Case 2, the set of edges can be divided into eight mutually disjoint subsets as in the proof of Theorem 1.1. Therefore, the edge weights under the labeling f are the following:

    1. The weights of the edges of the set A1, admit the successive integers from the set A1={1,2,...,3n36}.

    2. The weights of the edges of the set A2, admit the successive integers from the set A2={3n3n25,...,3n3n2}

    3. The weights of the edges of the set A3, admit the successive integers from the set {3n3n2+1,...,3n3n36},

    4. The weights of the edges of the set A4, admit the successive integers from the set A4={3n3n3+1,...,3n3n3+6}

    5. The weights of the edges of the set A5, admit the successive integers from the set A5={3n3n3+7,...,3n}

    6. The weights of the edges of the set A6, admit the successive integers from the set A6={3n3n35,...,3n3n3}

    7. The weights of the edges of the set A7, admit the successive integers from the set A7={3n3+1,...,3n3n26}

    8. The weights of the edges of the set A8, admit the successive integers from the set A8={3n35,...,3n3}

    Moreover, for n is odd and n2n3=2 the edge weights are from the set W={1,2,3,...,6n3+15} and for n2n33, the edge weights are from the set W={1,2,3,...,3n}. It is not difficult to see that all numbers in set W are different.

    Theorem 3. Let Cn(1,2,3,4,5), be a circulant graph on n15 vertices. Then

    res(Cn(1,2,3,4,5))={5n3,           n0,1,2,5(mod6),5n3+1,      n3,4(mod6).

    Proof. The corresponding labelings for Cn(1,2,3,4,5), n=10,11,12,13,14, are shown in Figure 4. From Lemma 1.1, we get the following lower bound for the circulant Cn(1,2,3,4,5) : res(Cn(1,2,3,4,5))k=5n3 if n0,1,2,5 (mod 6) and res(Cn(1,2,3,4,5))k=5n3+1 if n3,4 (mod 6). Now, we will prove that:

    res(Cn(1,2,3,4,5)){5n3,           n0,1,2,5(mod 6),5n3+1,      n3,4(mod 6).
    Figure 4.  The reflexive edge irregular k-labeling of Cn(1,2,3,4,5),n=10,11,12,13,14.

    For this we construct the f-labeling on Cn(1,2,3,4,5) as follows:

    For n15 we have the following labelings:

    f(xi)={0,                     1in3,2k4+4,           n3+1in2,2k2,                 n2+1in2+n3,2k8,                n2+n3+1in.

    Moreover, for the labeling of the edges xixi+1,1in we distinguish two cases.

    Case 1. If n2n34.

    Firstly, for n is odd.

    f(xixi+1)={i,                                               1in31,5n22k413,                          i=n3,4n3+n2n32(n2n3+1)4k4+7+i,                             n3+1in21,5n3+n2n32(n2n3+9)2(k2+k4)+17,                       i=n2.

    For n2+1in.

    f(xixi+1)={9n25n34k2+20+i,          n2+1in2+n31,5n3+(n2n3)22(k2+k8)+16,                       i=n2+n3,3n3n2n32(n2n37)4k810+i,                             n2+n3+1i2n2,5n32k814,                            i=n.
    f(xixi+2)={n31+i,                                      1in32,5n2n32k411+i,                  n31in3.

    For n3+1in2.

    If n2n3=2.

    f(xixi+2)=4n32(k2+k4)+28+i.

    If n2n33.

    f(xixi+2)={4n3+n2n32(n2n3+3)4k4+6+i,                                 n3+1in22,4n3+n2n32(n2n3+7)2(k4+k2)+19+i,                     n21in2.

    For n2+1in.

    f(xixi+2)={9n24n34k2+19+i,               n2+1in2+n32,4n3n2+(n2n3)22(k2+k8)+18+i,                      n2+n31in2+n3,3n3+n2n32(9n2+n3)4k810+i,                                 n2+n3+1i2n21,5n32n22k813+i,               2n2in.
    f(xixi+3)=2n33+i,             1in33.

    For n32in3.

    If n2n3=2.

    f(xixi+3)={4n32k4+2+i,                   n32in31,5n32k2+10,                      i=n3.

    If n2n33.

    f(xixi+3)=5n2n32k48+i.

    For n3+1in2.

    If n2n3=2.

    f(xixi+3)=4n32(k2+k4)+30+i.

    If n2n3=3

    f(xixi+3)=4n32(k2+k4)+37+i.

    If n2n3=4

    f(xixi+3)={4n34k4+22+i,                        n3+1in23,4n32(k2+k4)+44+i,              n22in2.

    For n2+n3+1i2n2+1.

    If n2n3=2

    f(xixi+3)=3n32k814+i.

    If n2n33.

    f(xixi+3)={3n3+(n2n3)2(11n2+n3)4k811+i,                                 n2+n3+1i2n22,5n32n22k810+i,                2n21in.
    f(xixi+4)=3n36+i,               1in34.

    For n33in3.

    If n3n2=2.

    f(xixi+4)={4n32k4+5+i,                    n33in32,4n32k2+12+i,                   n31in3.

    If n3n2=3.

    f(xixi+4)={4n22k41+i,               n33in31,5n32k2+18,                    i=n3.

    If n3n2=4.

    f(xixi+4)=4n22k4+i.

    For n3+1in2.

    f(xixi+4)={4n32(k2+k4)+32+i,                 ifn3n2=2,4n32(k2+k4)+40+i,                 ifn3n2=3,4n32(k2+k4)+48+i,                 ifn3n2=4.

    For n2+1in2+n3.

    f(xixi+4)=9n22n34k2+14+i,          n2+1in2+n34.

    If n3n2=2.

    f(xixi+4)={3n32(k2+k8)+27+i,         n2+n33in2+n3,5n32k2+13,                         i=n2+n3.

    If n3n23.

    f(xixi+4)=4n3n2+(n2n3)2              2(k2+k8)+25+i,                    n2+n33in2+n3.

    For n2+n3+1in.

    If n2n3=2.

    f(xixi+4)=3n32k811+i.

    If n2n3=3.

    f(xixi+4)=3n32k812+i.

    If n2n3=4.

    f(xixi+4)={3n34k8+5+i,                      n2+n3+1i2n23,3n32k814+i,                     2n22in.

    For 1in3.

    If n2n3=2.

    f(xixi+5)={5n32k4+3+i,                 1i2,5n32k2+11+i,                3in3.

    If n2n3=3.

    f(xixi+5)={4n310+i,                        1in35,andn36,4n22k4+3+i,                n34in32,4n32k2+20+i,              n31in3.

    If n2n3=4.

    f(xixi+5)={4n310+i,                                  1in35,4n22k4+5+i,                         n34in31,5n32k2+25,                             i=n3.

    For n3+1in2.

    f(xixi+5)={4n32(k2+k4)+34+i,                  ifn2n3=2,4n32(k2+k4)+43+i,                  ifn2n3=3,4n32(k2+k4)+52+i,                  ifn2n3=4.

    For n2+1in2+n3.

    If n2n3=2

    f(xixi+5)={4n32(k2+k8)+26+i,           n2+1in2+n32,4n32k2+11+i,                     n2+n31in2+n3.

    If n2n3=3

    f(xixi+5)={8n34k2++37+i,                      n2+1in2+n35andn36,3n32k22k8+36+i,             n2+n34in2+n31,5n32k2+21,          i=n2+n3.

    If n2n3=4

    f(xixi+5)={8n34k2+46+i,                      n2+1in2+n35,3n32(k2+k8)+42+i,           n2+n34in2+n3.

    For n2+n3+1in.

    f(xixi+5)={3n32k88+i,             ifn2n3=2,3,3n32k89+i,            ifn2n3=4.

    Secondly, for n is even.

    f(xixi+1)={i,                                                 1in31,5n22k418,                               i=n3,4n3n2n32(1n2+n3)4k4+7+i,                                n3+1in21,5n3+n2n32(n2n3+9)2(k2+k4)+12,                        i=n2,9n25n34k2+15+i,                 n2+1in2+n31,6n3n2+(n2n3)22(k2+k8)+16,                        i=n2+n3,3n3+n2n32(9n2+n3)4k815+i,                              n2+n3+1in1,5n32k814,                           i=n.
    f(xixi+2)={n31+i,                                   1in32,5n2n32k416+i,                n31in3,4n3+n2n32(n2n3+1)4k4+6+i,                               n3+1in22,4n3+n2n32(n2n3+7)2(k2+k4)+14+i,                    n21in2,9n24n34k2+14+i,                 n2+1in2+n32,5n3n+(n2n3)22(k2+k8)+18+i,                    n2+n31in2+n3,3n3+n2n32(11n2+n3)4k816+i,                               n2+n3+1in2,5n3n2k811+i,                   n2in.

    For 1in3.

    f(xixi+3)={2n33+i,                                  1in33,5n2n32k413+i,              n32in3.

    For n3+1in2.

    If n2n3=3.

    f(xixi+3)=4n32(k4+k2)+32+i.

    If n2n3=4.

    f(xixi+3)={4n34k4+18+i,                        n3+1in234n32(k4+k2)+39+i,              n22in2.

    For n2+1in2+n3.

    f(xixi+3)={9n23n34k2+12+i,                 n2+1in2+n335n3n+(n2n3)22(k2+k8)+21+i,                    n2+n32in2+n3.

    For n2+n3+1in.

    If n2n3=3.

    f(xixi+3)=3n32k815+i.

    If n2n3=4.

    f(xixi+3)={3n34k8+i,                        n2+n3+1in33n32k817+i,                   n2in.

    For 1in3.

    f(xixi+4)=3n36+i,           1in34.

    If n2n3=3.

    f(xixi+4)={4n32k4+6+i,                    n33in315n32k2+13,                    i=n3.

    If n2n3=4.

    f(xixi+4)=4n32k4+11+i,                    n33in3.

    For n3+1in2+n3.

    f(xixi+4)={4n32(k2+k4)+35+i,                    ifn2n3=34n32(k2+k4)+43+i,                    ifn2n3=4.

    For n2+1in2+n3.

    If n2n3=3.

    f(xixi+4)={7n34k2+36+i,           n2+1in2+n343n32(k2+k8)++28+i,                            n2+n33in2+n315n32k2+14,               i=n2+n3.

    If n2n3=4.

    f(xixi+4)={7n34k2+45+i,          n2+1in2+n343n32(k2+k8)++33+i,                           n2+n33in2+n3.

    For n2+n3+1in.

    f(xixi+4)={3n32k812+i,            ifn2n3=33n32k813+i,            ifn2n3=4.

    For 1in3.

    If n2n3=3.

    f(xixi+5)={4n310+i,                   1in35andn36,4n32k4+10+i,         n34in32,4n32k2+16+i,         n31in3.

    If n2n3=4.

    f(xixi+5)={4n310+i,                         1in35,4n32k4+16+i,                n34in31,5n32k2+20,                    i=n3.

    For n3+1in2.

    f(xixi+5)={4n32(k2+k4)+38+i,            ifn2n3=34n32(k2+k4)+47+i,            ifn2n3=4.

    For n2+1in2+n3.

    If n2n3=3.

    f(xixi+5)={8n34k2+32+i,         n2+1in2+n35andn36,3n32(k2+k8)++32+i,                            n2+n34in2+n32,3n32k2+15+i,           n2+n31in2+n3.

    If n2n3=4.

    f(xixi+5)={8n34k2+41+i,           n2+1in2+n35,3n32(k2+k8)++38+i,                            n2+n34in2+n31,5n32k2+21,               i=n2+n3.

    For n2+n3+1in.

    f(xixi+5)=3n32k89+i.

    Case 2. If n2n35.

    f(xixi+1)={i,                                       1in31,5n5n22k418,          i=n3,5n5n2n34k48+i,                     n3+1in21,5n5n32(k2+k4)3,                i=n2,5n5n3n24k2+15+i,                    n2+1in2+n31,5n5n32(k2+k8)14,               i=n2+n3,4n3n24k8+i,                           n2+n3+1in1,5n32k814,                  i=n.
    f(xixi+2)={n31+i,                        1in32,5n5n2n32k416+i,                  n31in3,5n4n22n34k49+i,                   n3+1in22,5nn25n32(k2+k4)1+i,         n21in2,5nn24n34k2+14+i,                  n2+1in2+n32,5nn26n32(k2+k8)12+i,       n2+n31in2+n3,n2n3+3n34k81+i,                   n2+n3+1in2,n+5n32k812+i,                             n1in.

    For 1in2

    f(xixi+3)={2n33+i,                    1in33,5n5n2n32k413+i,                 n32in3,5n3n23n34k411+i,                 n3+1in23,5nn25n32(k2+k4)+2+i,       n22in2.

    For n2+1in

    f(xixi+3)={5nn23n34k2+15+i,                n2+1in2+n33,5nn26n32(k2+k8)9+i,       n2+n32in2+n3,2n3n2+2n34k83+i,                 n2+n3+1in3,n+5n32k89+i,                 n2in.
    f(xixi+4)={3n36+i,                    1in34,5n5n2n32k49+i,                  n33in3,5n2n24n34k414+i,                 n3+1in24,5nn25n32(k2+k4)+6+i,       n23in2,5nn22n34k2+9+i,                   n2+1in2+n34,5nn26n32(k2+k8)5+i,         n2+n33in2+n3,3n4n2+n34k86+i,                  n2+n3+1in4,n+5n32k85+i,                   n3in.
    f(xixi+5)={4n310+i,                   1in35,5n5n2n32k44+i,                  n34in3,5nn25n34k418+i,                 n3+1in25andn2n36,5n6n32(k2+k4)+6+i,       n24in2,5nn2n34k2+5+i,                  n2+1in2+n35,5nn26n32(k2+k8)+i,             n2+n34in2+n3,4n5n24k810+i,                 n2+n3+1in5and                                      n2n36,wherenis even,n+5n32k8+i,                       n4in.

    Hence, we can see that f is k-labeling and all vertices are labeled with even numbers.

    Furthermore, we will estimate the weights of edges under the labeling f as follows:

    In Case 1, the edge set of Cn(1,2,3,4,5),n15 can be split into nine mutually disjoint subsets, A,19 as follows:

    A1={{xixi+j:1i5j,1j4},           ifn3=5.{xixi+j:1in3j,1j5},        ifn36

    the set of all edges which has end vertices labeled with 0.

    A2={xixi+j:n3j+1in3,1jn2n3} the set of all edges which has end vertices labeled with 0 and 2k4+2,

    A3={xixi+j:n3+1in2j,1jn2n31} the set of all edges which has end vertices labeled with 2k4+2,

    A4={xixi+j:n2+1jin2,1jn2n3} the set of all edges which has end vertices labeled with 2k4+2 and 2k2.

    A5={{xixi+j:n2+1in2+5j,1j4},        ifn3=5.{xixi+j:n2+1in2+n3j,1j5},     ifn36

    the set of all edges which has end vertices labeled with 2k2.

    A6={xixi+j:njin2+n3,1jnn2n3} the set of all edges which has end vertices labeled with 2k2 and 2k8.

    A7={xixi+j:n2+n3+1inj,1jnn2n31} the set of all edges which has end vertices labeled with 2k8.

    A8={xixi+j:nj+2in,1jnn2n3} the set of all edges which has end vertices labeled with 0 and 2k8.

    A9={xixi+j:n2j+1in3,n2n3+1j5}{xixi+j:n2j+2in,nn2n3+1j5} the set of all edges which has end vertices labeled with 0 and 2k2.

    Thus, for n is odd the edge weights under the labeling f are the following:

    1. The weights of the edges of the set A1, receive the consecutive integers from the set A1={1,2,...,5n315}.

    2. The weights of the edges of the set A2, receive the consecutive integers from the set A2={5n29,...,5n2+n2n32(11n2+n3)10}.

    3. The weights of the edges of the set A3, receive the consecutive integers from the set {5n3+n2n32(n2n3+1)+16,...,5n3+(n2n3)2+15}.

    4. The weights of the edges of the set A4, receive the consecutive integers from the set A4={5n2+n2n32(n2n31)+21,...,10n25n3+20}.

    5. The weights of the edges of the set A5, receive the consecutive integers from the set A5={10n25n3+21,...,10n2+5}.

    6. The weights of the edges of the set A6, receive the consecutive integers from the set A6={5n3+(n2n3)2+16,...,5n2+n2n32(n2n31)+20}.

    7. The weights of the edges of the set A7, receive the consecutive integers from the set A7={5n2+n2n32(n3n21)9,...,5n210}.

    8. The weights of the edges of the set A8, receive the consecutive integers from the set A8={5n314,...,5n2+n2n32(n3n21)10}.

    9. The weights of the edges of the set A9, receive the consecutive integers from the set A9={5n3+n2n32(11n2+n3)9,...,5n3+n2n32(n2n3+1)+15}.

    Also, for n is even the edge weights under the labeling f are the following:

    1. The weights of the edges of the set A1, receive the consecutive integers from the set A1={1,2,...,5n315}.

    2. The weights of the edges of the set A2, receive the consecutive integers from the set A2={5n214,...,5n3+n2n32(n3n2+21)15}.

    3. The weights of the edges of the set A3, receive the consecutive integers from the set {5n3+n2n32(n2n31)+16,...,6n3n2+(n2n3)2+15}.

    4. The weights of the edges of the set A4, receive the consecutive integers from the set A4={5n3+n2n32(n2n3+9)+16,...,5n5n3+15}.

    5. The weights of the edges of the set A5, receive the consecutive integers from the set A5={5n5n3+16,...,5n}.

    6. The weights of the edges of the set A6, receive the consecutive integers from the set A6={6n3n2+(n2n3)2+16,...,5n3+n2n32(n2n3+9)+15}.

    7. The weights of the edges of the set A7, receive the consecutive integers from the set A7={n2+4n3+n2n32(n3n2+9)14,...,5n215}.

    8. The weights of the edges of the set A8, receive the consecutive integers from the set A8={5n314,...,n2+4n3+n2n32(n3n2+9)15}.

    9. The weights of the edges of the set A9, receive the consecutive integers from the set A9={5n3+n2n32(n3n2+21)14,...,5n3+n2n32(n2n31)+15}.

    In Case 2, using the similar arguments as in the proof of Theorem 1.1, the edge set of Cn(1,2,3,4,5) can be divided into eight mutually disjoint subsets, so we can find the edge weights as follows:

    1. The weights of the edges of the set A1, receive the consecutive integers from the set A1={1,2,...,5n315}.

    2. The weights of the edges of the set A2, receive the consecutive integers from the set A2={5n5n214,...,5nn2}.

    3. The weights of the edges of the set A3, receive the consecutive integers from the set {5n5n2+1,...,5n5n315}.

    4. The weights of the edges of the set A4, receive the consecutive integers from the set A4={5n5n3+1,...,5n5n3+15}.

    5. The weights of the edges of the set A5, receive the consecutive integers from the set A5={5n5n35n3+16,...,5n}.

    6. The weights of the edges of the set A6, receive the consecutive integers from the set A6={5n5n314,...,5n5n3}.

    7. The weights of the edges of the set A7, receive the consecutive integers from the set A7={5n3+1,...,5n5n215}.

    8. The weights of the edges of the set A8, receive the consecutive integers from the set A8={5n314,...,5n3}.

    We can see that all vertex labels are even numbers. Furthermore, for n2n34 the edge weights are from the set W={1,2,...,10n2+5}, when n is odd and from the set W={1,2,...,5n}, when n is even. Also for n2n35, the edge weights are from the set W={1,2,...,5n}. Finally we can easily check that all numbers in the set W are distinct.

    In this paper we discuss an edge irregular reflexive k-labeling for three families of the circulant graphs Cn(1,2),Cn(1,2,3) and Cn(1,2,3,4,5) including their exact values of the reflexive edge strength. For n8 we proved that res(Cn(1,2))=2n3 for n0,2 (mod 3) and res(Cn(1,2))=2n3+1 for n1 (mod 3). Also we proved that res(Cn(1,2,3))=n for n is even and res(Cn(1,2,3))=n+1 for n is odd, where n6. Moreover we showed that res(Cn(1,2,3,4,5))=5n3+1 for n3,4 (mod 6), n15 and res(Cn(1,2,3,4,5))=5n3, otherwise.

    The author would like to thank the editors and anonymous reviewers for their careful reading, recommendations, and comments, which helped to improve the paper presentation.

    The authors declare that they have no competing interest.



    [1] A. Ahmad, O. B. S. Al-Mushayt, M. Baća, On edge irregularity strength of graphs, Appl. Math. Comput., 243 (2014), 607–610.
    [2] A. Ahmad, M. Baća, Y. Bashir, M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Comb., 106 (2012), 449–459.
    [3] A. Ahmad, M. Baća, M. K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst., 54 (2014), 1–12. doi: 10.1007/s00224-013-9470-3
    [4] A. Ahmad, M. K. Siddiqui, D. Afzal, On the total edge irregularity strength of zigzag graphs, Australas. J. Comb., 54 (2012), 141–150. ‏
    [5] A. Ahmad, M. Baća, On Vertex Irregular Total Labelings, Ars Comb., 112 (2013), 129–139.
    [6] I. H. Agustin, I. Utoyo, M. Venkatachalam, Edge irregular reflexive labeling of some tree graphs, J. Phys.: Conf. Ser., 1543 (2020), 012008. ‏ doi: 10.1088/1742-6596/1543/1/012008
    [7] M. Aigner, E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math., 3 (1990), 439–449. doi: 10.1137/0403038
    [8] O. B. S. Al-Mushayt, A. Ahmad, M. K. Siddiqui, On the total edge irregularity strength of hexagonal grid graphs, Australas. J. Comb., 53 (2012), 263–272.
    [9] D. Amar, O. Togni, Irregularity strength of trees, Discrete Math., 190 (1998), 15–38. doi: 10.1016/S0012-365X(98)00112-5
    [10] M. Anholcer, M. Kalkowski, J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math., 309 (2009), 6316–6317. doi: 10.1016/j.disc.2009.05.023
    [11] M. Baća, S. Jendrol, M. Miller, J. Ryan, On irregular total labellings, Discrete Math., 307 (2007), 1378–1388. doi: 10.1016/j.disc.2005.11.075
    [12] M. Baća, M. K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput., 235 (2014), 168–173.
    [13] M. Baća, M. K. Siddiqui, On total edge irregularity strength of strong product of two cycles, Util. Math., 104 (2017), 255–275.
    [14] M. Baća, M. Irfan, J. Ryan, A. Semaničovǎ-Feňovčkovǎ, D. Tanna, On edge irregular reflexive labelings for the generalized friendship graphs, Mathematics, 67 (2017), 2–11.
    [15] M. Baća, Y. Bashir, M. F. Nadeem, A. Shabbir, On super edge-antimagicness of circulant graphs, Graphs Comb., 31 (2015), 2019–2028. doi: 10.1007/s00373-014-1505-2
    [16] E. T. Baskoro, A. N. M. Salman, N. N. Gaos, On the total vertex irregularity strength of trees, Discrete Math., 310 (2010), 3043–3048. doi: 10.1016/j.disc.2010.06.041
    [17] J. C. Bermond, F. Comellas, D. F. Hsu, Distributed loop computer-networks: a survey, J. Parallel Distrib. Comput., 24 (1995), 2–10. doi: 10.1006/jpdc.1995.1002
    [18] T. Bohman, D. Kravitz, On the irregularity strength of trees, J. Graph Theory, 45 (2004), 241–254. doi: 10.1002/jgt.10158
    [19] R. E. Burkard, W. Sandholzer, Efficiently solvable special cases of bottleneck travelling salesman problems, Discrete Appl. Math., 32 (1991), 61–76. doi: 10.1016/0166-218X(91)90024-Q
    [20] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer, 64 (1988), 250. ‏
    [21] R. J. Faudree, R. H. Schelp, M. S. Jacobson, J. Lehel, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math., 76 (1989), 223–240. doi: 10.1016/0012-365X(89)90321-X
    [22] A. Frieze, R. J. Gould, M. Karoński, F. Pfender, On graph irregularity strength, J. Graph Theory, 41 (2002), 120–137.
    [23] K. M. M. Haque, Irregular total labellings of generalized Petersen graphs, Theory Comput. Syst., 50 (2012), 537–544. doi: 10.1007/s00224-011-9350-7
    [24] C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math., 268 (2003), 153–169. doi: 10.1016/S0012-365X(02)00685-4
    [25] P. Jalilolghadr, A. P. Kazemi, A. Khodkar, Total dominator coloring of circulant graphs Cn(a,b), arXiv preprint, (2019), arXiv: 1905.00211.
    [26] M. Kalkowski, M. Karoński, F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math., 25 (2011), 1319–1321. doi: 10.1137/090774112
    [27] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Can. Math. Bull., 13 (1970), 451–461. doi: 10.4153/CMB-1970-084-1
    [28] P. Majerski, J. Przybyło, Total vertex irregularity strength of dense graphs, J. Graph Theory, 76 (2014), 34–41. doi: 10.1002/jgt.21748
    [29] M. Meszka, R. Nedela, A. Rosa, The chromatic number of 5-valent circulants, Discrete Math., 308 (2008), 6269–6284. doi: 10.1016/j.disc.2007.11.065
    [30] J. Miškuf, R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math., 310 (2010), 400–407. doi: 10.1016/j.disc.2009.03.006
    [31] J. Ryan, B. Munasinghe, D. Tanna, Reflexive irregular labelings, 2017, preprint. ‏
    [32] J. Sedláček, Problem 27 in Thery of Graphs and Its Applications in Proceedings of the Symposium Smolenice, 1963,163–167.
    [33] B. M. Stewart, Magic graphs, Can. J. Math., 18 (1966), 1031–1059.
    [34] N. Sudev, Some new results on equitable coloring parameters of graphs, Acta Math. Univ. Comenianae, 89 (2019), 109–122.
    [35] D. Tanna, J. Ryan, A. Semaničovǎ-Feňovčkovǎ, A reflexive edge irregular labelings of prisms and wheels, Australas. J. Comb., 69 (2017), 394–401.
    [36] I. Tarawneh, R. Hasni, A. Ahmad, On the edge irregularity strength of corona product of cycle with isolated vertices, AKCE Int. J. Graphs Comb., 13 (2016), 213–217. doi: 10.1016/j.akcej.2016.06.010
    [37] H. G. Yeh, X. Zhu, 4-colorable 6-regular graphs, Discrete Math., 273 (2003), 261–274.
    [38] X. Zhang, M. Ibrahim, M. K. Siddiqui, Edge Irregular Reflexive Labeling for the Disjoint Union of Gear Graphs and Prism Graphs, Mathematics, 6 (2018), 142. doi: 10.3390/math6090142
  • This article has been cited by:

    1. Mohamed Basher, Edge irregular reflexive labeling for the $ r $-th power of the path, 2021, 6, 2473-6988, 10405, 10.3934/math.2021604
    2. Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki, Modular total vertex irregularity strength of graphs, 2023, 8, 2473-6988, 7662, 10.3934/math.2023384
    3. Ali N. A. Koam, Ali Ahmad, Martin Bača, Andrea Semaničová-Feňovčíková, Modular edge irregularity strength of graphs, 2023, 8, 2473-6988, 1475, 10.3934/math.2023074
    4. Kooi-Kuan Yoong, Roslan Hasni, Gee-Choon Lau, Muhammad Ahsan Asim, Ali Ahmad, Reflexive edge strength of convex polytopes and corona product of cycle with path, 2022, 7, 2473-6988, 11784, 10.3934/math.2022657
    5. M. Basher, The reflexive edge strength of toroidal fullerene, 2022, 0972-8600, 1, 10.1080/09728600.2022.2150587
    6. M. Basher, On the edge irregular reflexive labeling for some classes of plane graphs, 2023, 1432-7643, 10.1007/s00500-023-07973-9
    7. Muhammad Amir Asif, Rashad Ismail, Ayesha Razaq, Esmail Hassan Abdullatif Al-Sabri, Muhammad Haris Mateen, Shahbaz Ali, An application on edge irregular reflexive labeling for $ m^t $-graph of cycle graph, 2025, 10, 2473-6988, 1300, 10.3934/math.2025060
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2896) PDF downloads(111) Cited by(7)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog