Research article

Condition numbers of the minimum norm least squares solution for the least squares problem involving Kronecker products

  • Received: 07 March 2021 Accepted: 11 June 2021 Published: 23 June 2021
  • MSC : 65F35

  • In this paper, the upper bounds for two kinds of normiwse condition numbers are derived for $ \min\limits_{x}\|(A\otimes B)x-b\|_2 $ when the coefficient matrix is of rank deficient. In addition, the upper bounds on the mixed and componentwise condition numbers are also given. Numerical experiments are given to confirm our results.

    Citation: Lingsheng Meng, Limin Li. Condition numbers of the minimum norm least squares solution for the least squares problem involving Kronecker products[J]. AIMS Mathematics, 2021, 6(9): 9366-9377. doi: 10.3934/math.2021544

    Related Papers:

  • In this paper, the upper bounds for two kinds of normiwse condition numbers are derived for $ \min\limits_{x}\|(A\otimes B)x-b\|_2 $ when the coefficient matrix is of rank deficient. In addition, the upper bounds on the mixed and componentwise condition numbers are also given. Numerical experiments are given to confirm our results.



    加载中


    [1] M. Arioli, M. Baboulin, S. Gratton, A partial condition number for linear least squares problems, SIAM J. Matrix Anal. Appl., 29 (2007), 413–433. doi: 10.1137/050643088
    [2] A. Barrlund, Efficient solution of constrained least squares problems with Kronecker product structure, SIAM J. Matrix Anal. Appl., 19 (1994), 154–160.
    [3] A. Ben-Israel, On error bounds for generalized inverses, SIAM J. Numer. Anal., 3 (1966), 585–592. doi: 10.1137/0703050
    [4] E. H. Bergou, S. Gratton, J. Tshimanga, The exact condition number of the truncated singular value solution of a linear ill-posed problem, SIAM J. Matrix Anal. Appl., 35 (2014), 1073–1085. doi: 10.1137/120869286
    [5] T. Chen, W. Li, On condition numbers for the weighted Moore-Penrose inverse and the weighted least squares problem involving Kronecker products, East Asian J. Appl. Math., 4 (2014), 1–20. doi: 10.4208/eajam.230313.070913a
    [6] D. Chu, L. Lin, R. C. E. Tan, Y. Wei, Condition numbers and perturbation analysis for the Tikhonov regularization of discrete ill-posed problems, Numer. Linear Algebra Appl., 18 (2011), 87–103. doi: 10.1002/nla.702
    [7] H. Diao, W. Wang, Y. Wei, S. Qiao, On condition numbers for Moore-Penrose inverse and linear least squares problem involving Kronecker products, Numer. Linear Algebra Appl., 20 (2013), 44–59. doi: 10.1002/nla.1823
    [8] D. W. Fausett, C. T. Fulton, Large least squares problems involving Kronecker products, SIAM J. Matrix Anal. Appl., 15 (1994), 219–227. doi: 10.1137/S0895479891222106
    [9] D. W. Fausett, C. T. Fulton, H. Hashish, Improved parallel QR method for large least squares problems involving Kronecker products, J. Comput. Appl. Math., 78 (1997), 63–78. doi: 10.1016/S0377-0427(96)00109-4
    [10] C. T. Fulton, L. Wu, Parallel algorithms for large least squares problems involving Kronecker products, Nonlinear Anal. Theory Methods Appl., 30 (1997), 5033–5040. doi: 10.1016/S0362-546X(97)00189-2
    [11] I. Gohberg, I. Koltracht, Mixed, componentwise, and structured condition numbers, SIAM J. Matrix Anal. Appl., 14 (1993), 688–704. doi: 10.1137/0614049
    [12] G. H. Golub, C. F. Van Loan, Matrix computations, 4th ed., Johns Hopkins University Press, Baltimore, 2013.
    [13] A. Graham, Kronecker products and matrix calculus with application, Wiley, New York, 1981.
    [14] S. Gratton, On the condition number of linear least squares problems in a weighted Frobenius norm, BIT Numer. Math., 36 (1996), 523–530. doi: 10.1007/BF01731931
    [15] N. J. Higham, Accuracy and stability of numerical algorithms, 2nd ed., SIAM, Philadelphia, 2002.
    [16] W. Kang, H. Xiang, Condition numbers with their condition numbers for the weighted Moore-Penrose inverse and the weighted least squares solution, J. Appl. Math. Comput., 22 (2006), 95–112. doi: 10.1007/BF02896463
    [17] W. Kang, H. Xiang, Level-2 condition numbers for least-squares solution of Kronecker product linear systems, Int. J. Comput. Math., 85 (2008), 827–841. doi: 10.1080/00207160701464557
    [18] A. Marco, J. J. Martínez, R. Viaña, Least squares problems involving generalized Kronecker products and application to bivariate polynomial regression, Numer. Algorithms, 82 (2019), 21–39. doi: 10.1007/s11075-018-0592-1
    [19] P. A. Regalia, S. K. Mitra, Kronecker products, unitary matrices and signal processing applications, SIAM Rev., 31 (1989), 586–613. doi: 10.1137/1031127
    [20] J. Rohn, New condition numbers for matrices and linear systems, Computing, 41 (1989), 167–169. doi: 10.1007/BF02238741
    [21] Y. Wei, H. Diao, S. Qiao, Condition number for weighted linear least squares problem, J. Comput. Math., 25 (2007), 561–572.
    [22] H. Xiang, H. Diao, Y. Wei, On perturbation bounds of Kronecker product linear systems and their level-2 condition numbers, J. Comput. Appl. Math., 183 (2005), 210–231. doi: 10.1016/j.cam.2005.01.014
    [23] H. Zhang, H. Xiang, Y. Wei, Condition numbers for linear systems and Kronecker product linear systems with multiple right-hand sides, Int. J. Comput. Math., 84 (2007), 1805–1817. doi: 10.1080/00207160701332390
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2169) PDF downloads(95) Cited by(1)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog