Research article

Edge irregular reflexive labeling for the $ r $-th power of the path

  • Received: 05 May 2021 Accepted: 13 July 2021 Published: 19 July 2021
  • MSC : 05C12, 05C78, 05C90

  • Let $ G(V, E) $ be a graph, where $ V(G) $ is the vertex set and $ E(G) $ is the edge set. Let $ k $ be a natural number, a total k-labeling $ \varphi:V(G)\bigcup E(G)\rightarrow \{0, 1, 2, 3, ..., k\} $ is called an edge irregular reflexive $ k $-labeling if the vertices of $ G $ are labeled with the set of even numbers from $ \{0, 1, 2, 3, ..., k\} $ and the edges of $ G $ are labeled with numbers from $ \{1, 2, 3, ..., k\} $ in such a way for every two different edges $ xy $ and $ x^{'}y^{'} $ their weights $ \varphi(x)+\varphi(xy)+\varphi(y) $ and $ \varphi(x^{'})+\varphi(x^{'}y^{'})+\varphi(y^{'}) $ are distinct. The reflexive edge strength of $ G $, $ res(G) $, is defined as the minimum $ k $ for which $ G $ has an edge irregular reflexive $ k $-labeling. In this paper, we determine the exact value of the reflexive edge strength for the $ r $-th power of the path $ P_{n} $, where $ r\geq2 $, $ n\geq r+4 $.

    Citation: Mohamed Basher. Edge irregular reflexive labeling for the $ r $-th power of the path[J]. AIMS Mathematics, 2021, 6(10): 10405-10430. doi: 10.3934/math.2021604

    Related Papers:

  • Let $ G(V, E) $ be a graph, where $ V(G) $ is the vertex set and $ E(G) $ is the edge set. Let $ k $ be a natural number, a total k-labeling $ \varphi:V(G)\bigcup E(G)\rightarrow \{0, 1, 2, 3, ..., k\} $ is called an edge irregular reflexive $ k $-labeling if the vertices of $ G $ are labeled with the set of even numbers from $ \{0, 1, 2, 3, ..., k\} $ and the edges of $ G $ are labeled with numbers from $ \{1, 2, 3, ..., k\} $ in such a way for every two different edges $ xy $ and $ x^{'}y^{'} $ their weights $ \varphi(x)+\varphi(xy)+\varphi(y) $ and $ \varphi(x^{'})+\varphi(x^{'}y^{'})+\varphi(y^{'}) $ are distinct. The reflexive edge strength of $ G $, $ res(G) $, is defined as the minimum $ k $ for which $ G $ has an edge irregular reflexive $ k $-labeling. In this paper, we determine the exact value of the reflexive edge strength for the $ r $-th power of the path $ P_{n} $, where $ r\geq2 $, $ n\geq r+4 $.



    加载中


    [1] A. Ahmad, M. Bača, Y. Bashir, M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Comb., 106 (2012), 449–459.
    [2] A. Ahmad, M. Bača, M. K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst., 54 (2014), 1–12. doi: 10.1007/s00224-013-9470-3
    [3] A. Ahmad, M. K. Siddiqui, D. Afzal, On the total edge irregularity strength of zigzag graphs, Australas. J. Comb., 54 (2012), 141–150.‏
    [4] A. Ahmad, M. Bača, On Vertex Irregular Total Labelings, Ars Comb., 112 (2013), 129–139.
    [5] D. Amar, O. Togni, Irregularity strength of trees, Discrete Math., 190 (1998), 15–38. doi: 10.1016/S0012-365X(98)00112-5
    [6] I. H. Agustin, I. Utoyo, M. Venkatachalam, Edge irregular reflexive labeling of some tree graphs, J. Phys.: Conf. Ser., 1543 (2020), 012008. doi: 10.1088/1742-6596/1543/1/012008
    [7] M. Bača, S. Jendrol, M. Miller, J. Ryan, On irregular total labellings, Discrete Math., 307 (2007), 1378–1388. doi: 10.1016/j.disc.2005.11.075
    [8] M. Bača, M. K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput., 235 (2014), 168–173.
    [9] M. Bača, M. K. Siddiqui, On total edge irregularity strength of strong product of two cycles, Util. Math., 104 (2017), 255–275.
    [10] M. Bača, M. Irfan, J. Ryan, A. Semaničovǎ-Feňovčkovǎ, D. Tanna, On edge irregular reflexive labelings for the generalized friendship graphs, Mathematics, 67 (2017), 2–11.
    [11] M. Basher, On the reflexive edge strength of the circulant graphs, AIMS Math., 6 (2021), 9342–9365. doi: 10.3934/math.2021543
    [12] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer., 64 (1988), 197–210.‏
    [13] J. H. Dimitz, D. T. Garnick, A. Gyárfás, On the irregularity of $m\times n$ grid, J. Graph Theory, 16 (1992), 355–374. doi: 10.1002/jgt.3190160409
    [14] A. Gyárfás, The irregularity strength of $K_{m, m}$ is 4 for odd $m$, Discrete Math., 71 (1988), 273–274. doi: 10.1016/0012-365X(88)90106-9
    [15] Y. Ke, M. J. A. Khan, M. Ibrahim, M. K. Siddiqui, On edge irregular reflexive labeling for Cartesian product of two graphs, Eur. Phys. J. Plus, 136 (2021), 1–13.‏ doi: 10.1140/epjp/s13360-020-01001-7
    [16] J. Lahel, Facts and quests on degree irregular assignment, In: Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, New York, NY, USA, 1991,765–782.
    [17] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM. J. Discret. Math., 13 (2000), 313–323. doi: 10.1137/S0895480196314291
    [18] J. Ryan, B. Munasinghe, D. Tanna, Reflexive irregular labelings, (2017), preprint.
    [19] N. K. Sudev, Some new results on equitable coloring parameters of graphs, Acta Math. Univ. Comenianae, 89 (2020), 109–122.
    [20] D. Tanna, J. Ryan, A. Semaničovǎ-Feňovčkovǎ, A reflexive edge irregular labelings of prisms and wheels, Australas. J. Combin., 69 (2017), 394–401.
    [21] K. K. Yoong, R. Hasni, M. Irfan, I. Taraweh, A. Ahmad, S. M. Lee, On the edge irregular reflexive labeling of corona product of graphs with path, AKCE Int. J. Graphs Combinatorics, (2021), 1–7.‏
    [22] X. Zhang, M. Ibrahim, S. A. Bokhary, M. K. Siddiqui, Edge irregular reflexive labeling for the disjoint union of gear graphs and prism graphs, Mathematics, 6 (2018), 142. doi: 10.3390/math6090142
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2373) PDF downloads(98) Cited by(4)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog