Research article Special Issues

A new approach to generalized interpolative proximal contractions in non archimedean fuzzy metric spaces

  • Received: 07 July 2022 Revised: 30 October 2022 Accepted: 02 November 2022 Published: 11 November 2022
  • MSC : 47H10, 26E05, 26E25

  • We introduce a new type of interpolative proximal contractive condition that ensures the existence of the best proximity points of fuzzy mappings in the complete non-archimedean fuzzy metric spaces. We establish certain best proximity point theorems for such proximal contractions. We improve and generalize the fuzzy proximal contractions by introducing fuzzy proximal interpolative contractions. The obtained results improve and generalize the best proximity point theorems published in Fuzzy Information and Engineering, 5 (2013), 417–429. Moreover, we provide many nontrivial examples to validate our best proximity point theorem.

    Citation: Khalil Javed, Muhammad Nazam, Fahad Jahangeer, Muhammad Arshad, Manuel De La Sen. A new approach to generalized interpolative proximal contractions in non archimedean fuzzy metric spaces[J]. AIMS Mathematics, 2023, 8(2): 2891-2909. doi: 10.3934/math.2023151

    Related Papers:

  • We introduce a new type of interpolative proximal contractive condition that ensures the existence of the best proximity points of fuzzy mappings in the complete non-archimedean fuzzy metric spaces. We establish certain best proximity point theorems for such proximal contractions. We improve and generalize the fuzzy proximal contractions by introducing fuzzy proximal interpolative contractions. The obtained results improve and generalize the best proximity point theorems published in Fuzzy Information and Engineering, 5 (2013), 417–429. Moreover, we provide many nontrivial examples to validate our best proximity point theorem.



    加载中


    [1] S. S. Basha, Best proximity point theorems, J. Approx. Theory, 163 (2011), 1772–1781. https://doi.org/10.1016/j.jat.2011.06.012 doi: 10.1016/j.jat.2011.06.012
    [2] S. S. Basha, Best proximity point theorems for some classes of contractions, Acta Math. Hungar., 156 (2018), 336–360. https://doi.org/10.1007/s10474-018-0882-z doi: 10.1007/s10474-018-0882-z
    [3] R. Espínola, G. S. R. Kosuru, P. Veeramani, Pythagorean property and best proximity point theorems, J. Optim. Theory Appl., 164 (2015), 534–550. https://doi.org/10.1007/s10957-014-0583-x doi: 10.1007/s10957-014-0583-x
    [4] T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal., 71 (2009), 2918–2926. https://doi.org/10.1016/j.na.2009.01.173 doi: 10.1016/j.na.2009.01.173
    [5] E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135
    [6] E. Karapınar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry, 11 (2018), 8. https://doi.org/10.3390/sym11010008 doi: 10.3390/sym11010008
    [7] H. Aydi, C. M. Chen, E. Karapınar, Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance, Mathematics, 7 (2019), 84. https://doi.org/10.3390/math7010084 doi: 10.3390/math7010084
    [8] M. Nazam, H. Aydi, A. Hussain, Generalized interpolative contractions and an application, J. Math., 2021 (2021), 6461477. https://doi.org/10.1155/2021/6461477 doi: 10.1155/2021/6461477
    [9] E. Karapınar, R. P. Agarwal, Interpolative Rus-Reich-Ćirić type contractions via simulation functions, An. Şt. Univ. Ovidius Constanţa, 27 (2019), 137–152. https://doi.org/10.2478/auom-2019-0038
    [10] I. Altun, A. Taşdemir, On best proximity points of interpolative proximal contractions, Quaestiones Math., 44 (2021), 1233–1241. https://doi.org/10.2989/16073606.2020.1785576 doi: 10.2989/16073606.2020.1785576
    [11] L. A. Zadeh, Information and control, Fuzzy Sets, 8 (1965), 338–353.
    [12] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334. https://doi.org/10.2140/pjm.1960.10.313
    [13] V. Gregori, A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9
    [14] T. Rasham, G. Marino, A. Shahzad, C. Park, A. Shoaib, Fixed point results for a pair of fuzzy mappings and related applications in b-metric like spaces, Adv. Differ. Equ., 2021 (2021), 259. https://doi.org/10.1186/s13662-021-03418-5 doi: 10.1186/s13662-021-03418-5
    [15] M. Paknazar, Non-Archimedean fuzzy metric spaces and best proximity point theorems, Sahand Commun. Math. Anal., 9 (2018), 85–112.
    [16] C. Vetro, P. Salimi, Best proximity point results in non-Archimedean fuzzy metric spaces, Fuzzy Inf. Eng., 5 (2013), 417–429. https://doi.org/10.1007/s12543-013-0155-z doi: 10.1007/s12543-013-0155-z
    [17] L. Ajeti, A. Ilchev, B. Zlatanov, On coupled best proximity points in reflexive Banach spaces, Mathematics, 10 (2022), 1304. https://doi.org/10.3390/math10081304 doi: 10.3390/math10081304
    [18] M. Gabeleh, Best proximity points for weak proximal contractions, Bulletin Malaysian Math. Sci. Soc., 38 (2015), 143–154. https://doi.org/10.1007/s40840-014-0009-9 doi: 10.1007/s40840-014-0009-9
    [19] M. Gabeleh, N. Shahzad, Best proximity points, cyclic Kannan maps and geodesic metric spaces, J. Fixed Point Theory Appl., 18 (2016), 167–188. https://doi.org/10.1007/s11784-015-0272-x doi: 10.1007/s11784-015-0272-x
    [20] B. Zlatanov, Coupled best proximity points for cyclic contractive maps and their applications, Fixed Point Theory, 22 (2021), 431–452. https://doi.org/10.24193/fpt-ro.2021.1.29 doi: 10.24193/fpt-ro.2021.1.29
    [21] M. Gabeleh, E. U. Ekici, M. De La Sen, Noncyclic contractions and relatively nonexpansive mappings in strictly convex fuzzy metric spaces, AIMS Math., 7 (2022), 20230–20246. https://doi.org/10.3934/math.20221107 doi: 10.3934/math.20221107
    [22] B. Martínez, J. Fernández, E. Marichal, F. Herrera, Fuzzy modelling of nonlinear systems using on clustering methods, IFAC Proc. Vol., 40 (2007), 256–261. https://doi.org/10.3182/20070213-3-CU-2913.00044 doi: 10.3182/20070213-3-CU-2913.00044
    [23] A. F. Roldán López de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov-type fixed-point results in non-Archimedean fuzzy metric spaces, Mathematics, 9 (2021), 1594. https://doi.org/10.3390/math9141594 doi: 10.3390/math9141594
    [24] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21. https://doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1
    [25] M. Nazam, C. Park, M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Differ. Equ., 2021 (2021), 247. https://doi.org/10.1186/s13662-021-03405-w
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1315) PDF downloads(108) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog