Motivated by the recent investigations of several authors, the main aim of this article is to derive several functional inequalities for a class of functions related to the incomplete Fox-Wright functions that were introduced and studied recently. Moreover, new functional bounds for functions related to the Fox-Wright function are deduced. Furthermore, a class of completely monotonic functions related to the Fox-Wright function is given. The main mathematical tools used to obtain some of the main results are the monotonicity patterns and the Mellin transform for certain functions related to the two-parameter Mittag-Leffler function. Several potential applications for this incomplete special function are mentioned.
Citation: Khaled Mehrez, Abdulaziz Alenazi. Bounds for certain function related to the incomplete Fox-Wright function[J]. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929
Motivated by the recent investigations of several authors, the main aim of this article is to derive several functional inequalities for a class of functions related to the incomplete Fox-Wright functions that were introduced and studied recently. Moreover, new functional bounds for functions related to the Fox-Wright function are deduced. Furthermore, a class of completely monotonic functions related to the Fox-Wright function is given. The main mathematical tools used to obtain some of the main results are the monotonicity patterns and the Mellin transform for certain functions related to the two-parameter Mittag-Leffler function. Several potential applications for this incomplete special function are mentioned.
[1] | C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. Lond. Math. Soc., s2-27 (1928), 389–400. https://doi.org/10.1112/plms/s2-27.1.389 doi: 10.1112/plms/s2-27.1.389 |
[2] | E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. Lond. Math. Soc., s1-10 (1935), 287–293. https://doi.org/10.1112/jlms/s1-10.40.286 doi: 10.1112/jlms/s1-10.40.286 |
[3] | F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST handbook of mathematical functions, Cambridge, UK: NIST and Cambridge University Press, 2010. |
[4] | A. Wiman, Über den Fundamentalsatz in der Theorie der Funktionen $E_a (x)$, Acta Math., 29 (1905), 191–201. https://doi.org/10.1007/BF02403202 doi: 10.1007/BF02403202 |
[5] | R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-662-43930-2 |
[6] | H. M. Srivastava, R. K. Saxena, R. K. Parmar, Some families of the incomplete $H$-functions and the incomplete $H$-functions and associated integral transforms and operators of fractional calculus with applications, Russian J. Math. Phys., 25 (2018), 116–138. https://doi.org/10.1134/S1061920818010119 doi: 10.1134/S1061920818010119 |
[7] | D. J. Masirević, T. K. Pogany, Bounds for confluent Horn function $\Phi_2$ deduced by McKay $I_\nu$ Bessel law, Rad Hrvatske akademije znanosti i umjetnosti Matematicke znanosti, 27 (2023), 123–131. https://doi.org/10.21857/9xn31cd8wy doi: 10.21857/9xn31cd8wy |
[8] | J. F. Paris, E. Martos-Naya, U. Fernández-Plazaola, J. López-Fernández, Analysis of adaptive MIMO transmit beamforming under channel prediction errors based on incomplete Lipschitz Hankel integrals, IEEE Trans. Veh. Tehnol., 58 (2009), 2815–2824. https://doi.org/10.1109/TVT.2008.2011990 doi: 10.1109/TVT.2008.2011990 |
[9] | T. K. Pogány, Bounds for incomplete confluent Fox-Wright generalized hypergeometric functions, Mathematics, 10 (2022), 3106. https://doi.org/10.3390/math10173106 doi: 10.3390/math10173106 |
[10] | K. Mehrez, New properties for several classes of functions related to the Fox-Wright functions, J. Comput. Appl. Math., 362 (2019), 161–171. https://doi.org/10.1016/j.cam.2019.05.025 doi: 10.1016/j.cam.2019.05.025 |
[11] | K. Mehrez, S. M. Sitnik, Functional inequalities for the Fox-Wright functions, Ramnjuan J., 50 (2019), 263–287. https://doi.org/10.1007/s11139-018-0071-2 doi: 10.1007/s11139-018-0071-2 |
[12] | K. Mehrez, Integral representation and computational properties of the incomplete Fox-Wright function, Ramnjuan J., 58 (2022), 369–387. https://doi.org/10.1007/s11139-022-00571-7 doi: 10.1007/s11139-022-00571-7 |
[13] | M. M. Agrest, M. S. Maksimov, Theory of incomplete cylindrical functions and their Applications, Berlin, Heidelberg: Springer, 1971. https://doi.org/10.1007/978-3-642-65021-5 |
[14] | Yu. A. Brychkov, On some properties of the Nuttall function $Q_{\mu, \nu}(a, b)$, Integr. Transf. Spec. Funct., 25 (2014), 34–43. https://doi.org/10.1080/10652469.2013.812172 doi: 10.1080/10652469.2013.812172 |
[15] | K. Górska, A. Horzela, D. J. Masirević, T. K. Pogany, Observations on the McKay $I_\nu$ Bessel distribution, J. Math. Anal. Appl., 516 (2022), 126481. https://doi.org/10.1016/j.jmaa.2022.126481 doi: 10.1016/j.jmaa.2022.126481 |
[16] | F. McNolty, Some probability density functions and their characteristic functions, Math. Comput., 27 (1973), 495–504. |
[17] | M. A. Chaudhry, A. Qadir, Incomplete exponential and hypergeometric functions with applications to non-central $\chi^2$ -distribution, Commun. Stat. Theor. Meth., 34 (2002), 525–535. https://doi.org/10.1081/STA-200052154 doi: 10.1081/STA-200052154 |
[18] | H. M. Srivastava, M. A. Chaudhry, R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integr. Transf. Spec. Funct., 23 (2012), 659–683. https://doi.org/10.1080/10652469.2011.623350 doi: 10.1080/10652469.2011.623350 |
[19] | K. Mehrez, T. K. Pogány, Integrals of ratios of Fox-Wright and incomplete Fox-Wright functions with applications, J. Math. Inequal., 15 (2021), 981–1001. https://doi.org/10.7153/jmi-2021-15-67 doi: 10.7153/jmi-2021-15-67 |
[20] | D. J. Masirević, T. K. Pogány, On new formulae for cumulative distribution function for McKay Bessel distribution, Commun. Stat. Theor. Meth., 50 (2021), 143–160. https://doi.org/10.1080/03610926.2019.1632898 doi: 10.1080/03610926.2019.1632898 |
[21] | H. M. Srivastava, T. K. Pogány, Inequalities for a unified family of Voigt functions in several variables, Russ. J. Math. Phys., 14 (2007), 194–200. https://doi.org/10.1134/S1061920807020082 doi: 10.1134/S1061920807020082 |
[22] | S. Mehrez, M. Miraoui, P. Agarwal, Expansion formulas for a class of function related to incomplete Fox-Wright function, Bol. Soc. Mat. Mex., 30 (2024), 22. https://doi.org/10.1007/s40590-024-00596-6 doi: 10.1007/s40590-024-00596-6 |
[23] | M. Biernacki, J. Krzyz, On the monotonicity of certain functional in the theory of analytic functions, Annales Universitatis Mariae Curie-Sklodowska, A9 (1955), 135–147. |
[24] | T. K. Pogány, H. M. Srivastava, Some Mathieu-type series associated with the Fox-Wright function, Comput. Math. Appl., 57 (2009), 127–140. https://doi.org/10.1016/j.camwa.2008.07.016 doi: 10.1016/j.camwa.2008.07.016 |
[25] | E. Neuman, Inequalities and bounds for the incomplete Gamma function, Results Math., 63 (2013), 1209–1213. https://doi.org/10.1007/s00025-012-0263-9 doi: 10.1007/s00025-012-0263-9 |
[26] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pac. J. Math., 160 (1993), 1–18. https://doi.org/10.2140/pjm.1993.160.1 doi: 10.2140/pjm.1993.160.1 |
[27] | D. V. Widder, The Laplace transform, Princeton: Princeton Univ. Press, 1941. |
[28] | W. R. Schneider, Completely monotone generalized Mittag-Leffler functions, Expo. Math., 14 (1996), 003–016. |
[29] | K. Górska, A. Horzela, A. Lattanzi, T. K. Pogany, On complete monotonicity of three parameter Mittag-Leffler function, Appl. Anal. Discr. Math., 15 (2021), 118–128. https://doi.org/10.2298/AADM190226025G doi: 10.2298/AADM190226025G |
[30] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Mathematical Journal, 19 (1971), 7–15. |
[31] | Yu. Luchko, R. Gorenflo, Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal., 1 (1998), 63–78. |