Research article

Some integral inequalities for coordinated log-h-convex interval-valued functions

  • Received: 26 July 2021 Accepted: 25 September 2021 Published: 09 October 2021
  • MSC : 26D15, 26E25, 26B25, 28B20

  • We introduce and investigate the coordinated log-h-convexity for interval-valued functions. Also, we prove some new Jensen type inequalities and Hermite-Hadamard type inequalities, which generalize some known results in the literature. Moreover, some examples are given to illustrate our results.

    Citation: Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu. Some integral inequalities for coordinated log-h-convex interval-valued functions[J]. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009

    Related Papers:

    [1] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241
    [2] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089
    [3] Mujahid Abbas, Waqar Afzal, Thongchai Botmart, Ahmed M. Galal . Jensen, Ostrowski and Hermite-Hadamard type inequalities for $ h $-convex stochastic processes by means of center-radius order relation. AIMS Mathematics, 2023, 8(7): 16013-16030. doi: 10.3934/math.2023817
    [4] Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman . Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions. AIMS Mathematics, 2022, 7(6): 10454-10482. doi: 10.3934/math.2022583
    [5] Waqar Afzal, Khurram Shabbir, Savin Treanţă, Kamsing Nonlaopon . Jensen and Hermite-Hadamard type inclusions for harmonical $ h $-Godunova-Levin functions. AIMS Mathematics, 2023, 8(2): 3303-3321. doi: 10.3934/math.2023170
    [6] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [7] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [8] Waqar Afzal, Waqas Nazeer, Thongchai Botmart, Savin Treanţă . Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation. AIMS Mathematics, 2023, 8(1): 1696-1712. doi: 10.3934/math.2023087
    [9] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [10] Waqar Afzal, Sayed M. Eldin, Waqas Nazeer, Ahmed M. Galal . Some integral inequalities for harmonical $ cr $-$ h $-Godunova-Levin stochastic processes. AIMS Mathematics, 2023, 8(6): 13473-13491. doi: 10.3934/math.2023683
  • We introduce and investigate the coordinated log-h-convexity for interval-valued functions. Also, we prove some new Jensen type inequalities and Hermite-Hadamard type inequalities, which generalize some known results in the literature. Moreover, some examples are given to illustrate our results.



    The convexity of function is a classical concept, since it plays a fundamental role in mathematical programming theory, game theory, mathematical economics, variational science, optimal control theory and other fields, a new branch of mathematics, convex analysis, appeared in the 1960s. However, it has been noticed that the functions encountered in a large number of theoretical and practical problems in economics are not classical convex functions, therefore, in the past decades, the generalization of function convexity has attracted the attention of many scholars and aroused great interest, such as h-convex functions [1,2,3,4,5], log-convex functions [6,7,8,9,10], log-h-convex functions [11], and especially for coordinated convex [12]. Since 2001, various extensions and generalizations of integral inequalities for coordinated convex functions have been established in [12,13,14,15,16,17].

    On the other hand, calculation error has always been a troublesome problem in numerical analysis. In many problems, it is often to speculate the accuracy of calculation results or use high-precision operation as far as possible to ensure the accuracy of the results, because the accumulation of calculation errors may make the calculation results meaningless, interval analysis as a new important tool to solve uncertainty problems has attracted much attention and also has yielded fruitful results, we refer the reader to the papers [18,19]. It is worth notion that in recent decades, many authors have combined integral inequalities with interval-valued functions(IVFs) and obtained many excellent conclusions. In [20], Costa gave Opial-type inequalities for IVFs. In [21,22], Chalco-Cano investigated Ostrowski type inequalities for IVFs by using generalized Hukuhara derivative. In [23], Román-Flores derived the Minkowski type inequalities and Beckenbach's type inequalities for IVFs. Very recently, Zhao [5,24] established the Hermite-Hadamard type inequalities for interval-valued coordinated functions.

    Motivated by these results, in the present paper, we introduce the concept of coordinated log-h-convex for IVFs, and then present some new Jensen type inequalities and Hermite-Hadamard type inequalities for interval-valued coordinated functions. Also, we give some examples to illustrate our main results.

    Let RI the collection of all closed and bounded intervals of R. We useR+IandR+ to represent the set of all positive intervals and the family of all positive real numbers respectively. The collection of all Riemann integrable real-valued functions on [a,b], IVFs on [a,b] and IVFs on =[a,b]×[c,d] are denoted by R([a,b]), IR([a,b]) and ID(). For more conceptions on IVFs, see [4,25]. Moreover, we have

    Theorem 1. [4] Let f:[a,b]RI such that f=[f_,¯f]. Then fIR([a,b]) iff f_, ¯fR([a,b]) and

    (IR)baf(x)dx=[(R)baf_(x)dx,(R)ba¯f(x)dx].

    Theorem 2. [25] Let F:RI. If FID(), then

    (ID)F(x,y)dxdy=(IR)badx(IR)dcF(x,y)dy.

    Definition 1. [26] Let h:[0,1]R+. We say that f:[a,b]R+I is interval log-h-convex function or that fSX(log-h,[a,b],R+I), if for all x,y[a,b] and ϑ[0,1], we have

    f(ϑx+(1ϑ)y)[f(x)]h(ϑ)[f(y)]h(1ϑ).

    h is called supermultiplicative if

    h(ϑτ)h(ϑ)h(τ) (2.1)

    for all ϑ,τ[0,1]. If "" in (2.1) is replaced with "", then h is called submultiplicative.

    Theorem 3. [26] Let F:[a,b]R+I,h(12)0. If FSX(log-h,[a,b],R+I) and FIR([a,b]), then

    F(a+b2)12h(12)exp[1babalnF(x)dx][F(a)F(b)]10h(ϑ)dϑ. (2.2)

    Theorem 4. [27] Let F:[a,b]R+I,h(12)0. If FSX(log-h,[a,b],R+I) and FIR([a,b]), then

    [F(a+b2)]14h2(12)[F(3a+b4)F(a+3b4)]14h(12)(baF(x)dx)1ba[F(a)F(b)F2(a+b2)]1210h(ϑ)dϑ[F(a)F(b)][12+h(12)]10h(ϑ)dϑ. (2.3)

    In this section, we define the coordinated log-h-convex for IVFs and prove some new Jensen type inequalities and Hermite-Hadamard type inequalities by using this new definition.

    Definition 2. Let h:[0,1]R+. Then F:R+I is called a coordinated log-h-convex IVFs on if the partial mappings

    Fy:[a,b]R+I,Fy(x)=F(x,y),Fx:[c,d]R+I,Fx(y)=F(x,y)

    are log-h-convex for all y[c,d] and x[a,b]. Then the set of all coordinated log-h-convex IVFs on is denoted by SX(log-ch,,R+I).

    Definition 3. Let h:[0,1]R+. Then F:R+ is called a coordinated log-h-convex function in if for any (x1,y1),(x2,y2) and ϑ[0,1] we have

    F(ϑx1+(1ϑ)x2,ϑy1+(1ϑ)y2)[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1ϑ). (3.1)

    The set of all log-h-convex functions in is denoted by SX(log-h,,R+). If inequality (3.1) is reversed, then F is said to be a coordinated log-h-concave function, the set of all log-h-concave functions in is denoted by SV(log-h,,R+).

    Definition 4. Let h:[0,1]R+. Then F:R+I is called a coordinated log-h-convex IVF in if for any (x1,y1),(x2,y2) and ϑ[0,1] we have

    F(ϑx1+(1ϑ)x2,ϑy1+(1ϑ)y2)[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1ϑ).

    The set of all log-h-convex IVFs in is denoted by SX(log-h,,R+I).

    Theorem 5. Let F:R+I such that F=[F_,¯F]. If FSX(log-h,,R+I) iff F_SX(log-h,,R+) and ¯FSV(log-h,,R+).

    Proof. The proof is completed by combining the Definitions 3 and 4 above and the Theorem 3.7 of [4].

    Theorem 6. If FSX(log-h,,R+I), then FSX(log-ch,,R+I).

    Proof. Assume that FSX(log-h,,R+I). Let Fx:[c,d]R+I,Fx(y)=F(x,y). Then for all ϑ[0,1] and y1,y2[c,d], we have

    Fx(ϑy1+(1ϑ)y2)=F(x,ϑy1+(1ϑ)y2)F(ϑx+(1ϑ)x,ϑy1+(1ϑ)y2)[F(x,y1)]h(ϑ)[F(x,y2)]h(1ϑ)=[Fx(y1)]h(ϑ)[Fx(y2)]h(1ϑ).

    Hence Fx(y)=F(x,y) is log-h-convex on [c,d]. The fact that Fy(x)=F(x,y) is log-h-convex on [a,b] goes likewise.

    Remark 1. The converse of Theorem 6 is not generally true. Let h(ϑ)=ϑ and ϑ[0,1], 1=[π4,π2]×[π4,π2], and F:1R+I be defined:

    F(x,y)=[esinxsiny,64xy].

    Obviously, we have that FSX(log-ch,1,R+I) and FSX(log-h,1,R+I). Indeed, if (π4,π2),(π2,π4)1, we have

    F(ϑπ4+(1ϑ)π2,ϑπ2+(1ϑ)π4)=[esinϑπ4sin(1ϑ)π2,8π2ϑ(1ϑ)],(F(π4,π2))h(ϑ)(F(π2,π4))h(1ϑ)=[e(122)ϑ1,2ϑ+1π].

    If ϑ=0, then

    [0,1e][1e,2π].

    Thus, FSX(log-h,1,R+I).

    In the following, Jensen type inequalities for coordinated log-h-convex functions in is considered.

    Theorem 7. Let piR+,xi[a,b],yi[c,d],(i=1,2,...,n),F:R+. If h is a nonnegative supermultiplicative function and FSX(log-h,,R+), then

    F(1Pnni=1pixi,1Pnni=1piyi)ni=1[F(xi,yi)]h(piPn), (3.2)

    where Pn=ni=1pi. If h is a nonnegative submultiplicative function and FSV(log-h,,R+), then (3.2) is reversed.

    Proof. If n=2, then from Definition 3, we have

    F(p1P2x1+p2P2x2,p1P2y1+p2P2y2)[F(x1,y1)]h(p1P2)[F(x2,y2)]h(p2P2).

    Suppose (3.2) holds for n=k, then

    F(1Pkki=1pixi,1Pkki=1piyi)ki=1[F(xi,yi)]h(piPk).

    Now, let us prove that (3.2) is valid when n=k+1,

    F(1Pk+1k+1i=1pixi,1Pk+1k+1i=1piyi)=F(1Pk+1k1i=1pixi+pk+pk+1Pk+1(pkxkpk+pk+1+pk+1xk+1pk+pk+1),1Pk+1k1i=1piyi+pk+pk+1Pk+1(pkykpk+pk+1+pk+1yk+1pk+pk+1))[F(pkxkpk+pk+1+pk+1xk+1pk+pk+1,pkykpk+pk+1+pk+1yk+1pk+pk+1)]h(pk+pk+1Pk+1)k1i=1[F(xi,yi)]h(piPk+1)([F(xk,yk)]h(pkpk+pk+1)[F(xk+1,yk+1)]h(pk+1pk+pk+1))h(pk+pk+1Pk+1)k1i=1[F(xi,yi)]h(piPk+1)[F(xk,yk)]h(pkPk+1)[F(xk+1,yk+1)]h(pk+1Pk+1)k1i=1[F(xi,yi)]h(piPk+1)=k+1i=1[F(xi,yi)]h(piPk+1).

    This completes the proof.

    Remark 2. If h(ϑ)=ϑ, then the inequality (3.2) is the Jensen inequality for log-convex functions.

    Now, we prove the Jensen inequality for log-h-convex IVFs in .

    Theorem 8. Let piR+,xi[a,b],yi[c,d],i=1,2,...,n,F:R+I such that F=[F_,¯F]. If h is a nonnegative supermultiplicative function and FSX(log-h,,R+I), then

    F(1Pnni=1pixi,1Pnni=1piyi)ni=1[F(xi,yi)]h(piPn), (3.3)

    where Pn=ni=1pi. If FSV(log-h,,R+I), then (3.3) is reversed.

    Proof. By Theorem 5 and Theorem 7, we have

    F_(1Pnni=1pixi,1Pnni=1piyi)ni=1[F_(xi,yi)]h(piPn)

    and

    ¯F(1Pnni=1pixi,1Pnni=1piyi)ni=1[¯F(xi,yi)]h(piPn).

    Thus,

    F(1Pnni=1pixi,1Pnni=1piyi)=[F_(1Pnni=1pixi,1Pnni=1piyi),¯F(1Pnni=1pixi,1Pnni=1piyi)][ni=1[F_(xi,yi)]h(piPn),ni=1[¯F(xi,yi)]h(piPn)]=ni=1[F(xi,yi)]h(piPn).

    This completes the proof.

    Next, we prove the Hermite-Hadamard type inequalities for coordinated log-h-convex IVFs.

    Theorem 9. Let F:R+I and h:[0,1]R+ be continuous. If FSX(log-ch,,R+I), then

    [F(a+b2,c+d2)]14h2(12)exp[14h(12)(12h(12)(ba)balnF(x,c+d2)dx+12h(12)(dc)dclnF(a+b2,y)dy)]exp[1(ba)(dc)badclnF(x,y)dxdy]exp[1210h(ϑ)dϑ(1babalnF(x,c)dx+1abalnF(x,d)dx+1dcdclnF(a,y)dy+1dcdclnF(b,y)dy)][F(a,c)F(a,d)F(b,c)F(b,d)](10h(ϑ)dϑ)2. (3.4)

    Proof. Since FSX(log-ch,,R+I), we have

    Fx(c+d2)=Fx(ϑc+(1ϑ)d+(1ϑ)c+ϑd2)[Fx(ϑc+(1ϑ)d)]h(12)[Fx((1ϑ)c+ϑd)]h(12).

    That is,

    lnFx(c+d2)h(12)ln[Fx(ϑc+(1ϑ)d)Fx((1ϑ)c+ϑd)].

    Moreover, we have

    1h(12)lnFx(c+d2)[10lnFx(ϑc+(1ϑ)d)dϑ+10lnFx((1ϑ)c+ϑd)dϑ]=[10lnF_x(ϑc+(1ϑ)d)dϑ,10ln¯Fx(ϑc+(1ϑ)d)dϑ]+[10lnF_x((1ϑ)c+ϑd)dϑ,10ln¯Fx((1ϑ)c+ϑd)dϑ]=2[1dcdclnF_x(y)dy,1dcdcln¯Fx(y)dy]=2dcdclnFx(y)dy.

    Similarly, we get

    1dcdclnFx(y)dyln[Fx(c)Fx(d)]10h(ϑ)dϑ.

    Then

    12h(12)lnFx(c+d2)1dcdclnFx(y)dyln[Fx(c)Fx(d)]10h(ϑ)dϑ.

    That is,

    12h(12)lnF(x,c+d2)1dcdclnF(x,y)dyln[F(x,c)F(x,d)]10h(ϑ)dϑ.

    Integrating over [a,b], we have

    12h(12)(ba)balnF(x,c+d2)dx1(ba)(dc)badclnF(x,y)dxdy[1babalnF(x,c)dx+1babalnF(x,d)dx]10h(ϑ)dϑ.

    Similarly, we have

    12h(12)(dc)dclnF(a+b2,y)dy1(ba)(dc)badclnF(x,y)dxdy[1dcdclnF(a,y)dy+1dcdclnF(b,y)dy]10h(ϑ)dϑ.

    Finally, we obtain

    14h2(12)lnF(a+b2,c+d2)=14h(12)[12h(12)(ba)balnF(x,c+d2)dx+12h(12)(dc)dclnF(a+b2,y)dy]1(ba)(dc)badclnF(x,y)dxdy1210h(ϑ)dϑ[1babalnF(x,c)dx+1babalnF(x,d)dx+1dcdclnF(a,y)dy+1dcdclnF(b,y)dy]12(10h(ϑ)dϑ)2[lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)+lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)](10h(ϑ)dϑ)2[lnF(a,c)F(a,d)F(b,c)F(b,d)].

    This concludes the proof.

    Remark 3. If F_=¯F and h(ϑ)=ϑ, then Theorem 9 reduces to Corollary 3.1 of [13].

    Example 1. Let [a,b]=[c,d]=[2,3],h(ϑ)=ϑ. We define F:[2,3]×[2,3]R+I by

    F(x,y)=[1xy,ex+y].

    From Definition 2, F(x,y)SX(log-ch,,R+I).

    Since

    [F(a+b2,c+d2)]14h2(12)=[425,e10],exp[14h(12)(12h(12)(ba)balnF(x,c+d2)dx+12h(12)(dc)dclnF(a+b2,y)dy)]=[8e135,e102+23423],exp[1(ba)(dc)badclnF(x,y)dxdy]=[16e2729,e43(3322)],exp[1210h(ϑ)dϑ(1babalnF(x,c)dx+1babalnF(x,d)dx+1dcdclnF(a,y)dy+1dcdclnF(b,y)dy)]=[26e81,e153526],

    and

    [F(a,c)F(a,d)F(b,c)F(b,d)](10h(ϑ)dϑ)2=[16,e2+3].

    It follows that

    [425,e10][8e135,e102+23423][16e2729,e43(3322)][26e81,e153526][16,e2+3]

    and Theorem 9 is verified.

    Theorem 10. Let F:R+I and h:[0,1]R+ be continuous. If FSX(log-ch,,R+I), then

    [F(a+b2,c+d2)]14h3(12)exp[14h2(12)(ba)baln(F(x,c+d2))dx+14h2(12)(dc)dcln(F(a+b2,y))dy]exp[14h(12)(ba)baln(F(x,3c+d4)F(x,c+3d4))dx+14h(12)(dc)dcln(F(3a+b4,y)F(a+3b4,y))dy]exp[2(ba)(dc)badclnF(x,y)dxdy] (3.5)
    exp[12(ba)baln(F(x,c)F(x,d)F2(x,fracc+d2))dx10h(ϑ)dϑ+12(dc)dcln(F(a,y)F(b,y)F2(a+b2,y))dy10h(ϑ)dϑ]exp[(12+h(12))1babaln[F(x,c)F(x,d)]dx10h(ϑ)dϑ+(12+h(12))1dcdcln[F(a,y)F(b,y)]dy10h(ϑ)dϑ][F(a,c)F(a,d)F(b,c)F(b,d)F(a+b2,c)F(a+b2,d)×F(a,c+d2)F(b,c+d2)][12+h(12)](10h(ϑ)dϑ)2[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(10h(ϑ)dϑ)2.

    Proof. Since FSX(log-ch,,R+I), by using Theorem 6 and (2.3), we have

    14h2(12)ln[Fy(a+b2)]14h(12)ln[Fy(3a+b4)Fy(a+3b4)]1babalnFy(x)dx12ln[Fy(a)Fy(b)F2y(a+b2)]10h(ϑ)dϑ[12+h(12)]ln[Fy(a)Fy(b)]10h(ϑ)dϑ.

    That is,

    14h2(12)ln[F(a+b2,y)]14h(12)ln[F(3a+b4,y)F(a+3b4,y)]1babalnF(x,y)dx12ln[F(a,y)F(b,y)F2(a+b2,y)]10h(ϑ)dϑ[12+h(12)]ln[F(a,y)F(b,y)]10h(ϑ)dϑ.

    Moreover, we have

    14h2(12)(dc)dcln[F(a+b2,y)]dy14h(12)(dc)dcln[F(3a+b4,y)F(a+3b4,y)]dy1(ba)(dc)badclnF(x,y)dxdy12(dc)dcln[F(a,y)F(b,y)F2(a+b2,y)]dy10h(ϑ)dϑ[12+h(12)]1dcdcln[F(a,y)F(b,y)]dy10h(ϑ)dϑ.

    Similarly, we have

    We also from (2.2),

    12h(12)lnF(a+b2,c+d2)1babalnF(x,c+d2)dx,12h(12)lnF(a+b2,c+d2)1dcdclnF(a+b2,y)dy.

    Again from (2.3),

    1babalnF(x,c)dx12ln[F(a,c)F(b,c)F2(a+b2,c)]10h(ϑ)dϑ[12+h(12)]ln[F(a,c)F(b,c)]10h(ϑ)dϑ,1babalnF(x,d)ds12ln[F(a,d)F(b,d)F2(a+b2,d)]10h(ϑ)dϑ[12+h(12)]ln[F(a,d)F(b,d)]10h(ϑ)dϑ,1dcdclnF(a,y)dy12ln[F(a,c)F(a,d)F2(a,c+d2)]10h(ϑ)dϑ[12+h(12)]ln[F(a,c)F(a,d)]10h(ϑ)dϑ,1dcdclnF(b,y)dy12ln[F(b,c)F(b,d)F2(b,c+d2)]10h(ϑ)dϑ[12+h(12)]ln[F(b,c)F(b,d)]10h(ϑ)dϑ

    and proof is completed.

    Example 2. Furthermore, by Example 1, we have

    and

    [F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(10h(θ)dθ)2=[136,e23+22].

    It follows that

    [16625,e210][64e218225,e4(3322)+3103][256e272171,e4(3322)3+3+112][256e4531441,e8(3322)3][166e210935,e12382+3106][8e22187,e153523][690,e33+32+102][136,e23+22]

    and Theorem 10 is verified.

    We introduced the coordinated log-h-convexity for interval-valued functions, some Jensen type inequalities and Hermite-Hadamard type inequalities are proved. Our results generalize some known inequalities and will be useful in developing the theory of interval integral inequalities and interval convex analysis. The next step in the research direction investigated inequalities for fuzzy-interval-valued functions, and some applications in interval nonlinear programming.

    The first author was supported in part by the Key Projects of Educational Commission of Hubei Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500) and the National Key Research and Development Program of China (2018YFC1508100).

    The authors declare no conflict of interest.



    [1] M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008), 335–341. doi: 10.7153/jmi-02-30. doi: 10.7153/jmi-02-30
    [2] M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. doi: 10.1016/j.camwa.2009.07.073. doi: 10.1016/j.camwa.2009.07.073
    [3] M. Noor, K. Noor, M. Awan, A new Hermite-Hadamard type inequality for h-convex functions, Creat. Math. Inform., 24 (2015), 191–197.
    [4] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 302 (2018). doi: 10.1186/s13660-018-1896-3.
    [5] D. Zhao, G. Zhao, G. Ye, W. Liu, S. Dragomir, On Hermite-Hadamard-type inequalities for coordinated h-convex interval-valued functions, Mathematics, 9 (2021), 2352. doi: 10.3390/math9192352. doi: 10.3390/math9192352
    [6] S. Dragomir, B. Mond, Integral inequalities of Hadamard type for log-convex functions, Demonstr. Math., 31 (1998), 354–364. doi: 10.1515/dema-1998-0214. doi: 10.1515/dema-1998-0214
    [7] S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, Aust. Math. Sco. Gaz., 28 (2000), 129–134.
    [8] S. Dragomir, A survey of Jensen type inequalities for log-convex functions of selfadjoint operators in Hilbert spaces, Commun. Math. Anal., 10 (2011), 82–104.
    [9] C. Niculescu, The Hermite-Hadamard inequality for log-convex functions, Nonlinear Anal-Theor., 75 (2012), 662–669. doi: 10.1016/j.na.2011.08.066. doi: 10.1016/j.na.2011.08.066
    [10] S. Dragomir, New inequalities of Hermite-Hadamard type for log-convex functions, Khayyam J. Math., 3 (2017), 98–115.
    [11] M. Noor, F. Qi, M. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Analysis, 33 (2013), 367–375. doi: 10.1524/anly.2013.1223. doi: 10.1524/anly.2013.1223
    [12] S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788. doi: 10.11650/twjm/1500574995. doi: 10.11650/twjm/1500574995
    [13] M. Alomari, M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Inequal. Appl., 2009 (2009), 283147. doi: 10.1155/2009/283147. doi: 10.1155/2009/283147
    [14] M. Sarikaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integr. Transf. Spec. F., 25 (2014), 134–147. doi: 10.1080/10652469.2013.824436. doi: 10.1080/10652469.2013.824436
    [15] M. Özdemir, E. Set, M. Sarikaya, Some new Hadamard type inequalities for co-ordinated m-convex and (α, m)-convex functions, Hacet. J. Math. Stat., 40 (2011), 219–229. doi: 10.1007/s10883-011-9120-5. doi: 10.1007/s10883-011-9120-5
    [16] M. Alomari, M. Darus, Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci., 3 (2008), 1557–1567.
    [17] M. Latif, M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, Int. Math. Forum, 4 (2009), 2327–2338.
    [18] D. Singh, B. A. Dar, D. S. Kim, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. doi: 10.3934/jimo.2018063. doi: 10.3934/jimo.2018063
    [19] I. Ahmad, D. Singh, B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19–45.
    [20] T. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. doi: 10.1016/j.fss.2018.04.012. doi: 10.1016/j.fss.2018.04.012
    [21] Y. Chalco-Cano, W. Lodwick, W. Condori-Equice, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 475–472. doi: 10.1007/s40314-016-0396-7. doi: 10.1007/s40314-016-0396-7
    [22] A. Flores-Franulič, Y. Chalco-Cano, H. Román-Flores, An Ostrowski type inequality for interval-valued functions, In: IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1459–1462. doi: 10.1109/ifsa-nafips.2013.6608617. doi: 10.1109/ifsa-nafips.2013.6608617
    [23] H. Román-Flores, Y. Chalco-Cano, W. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2016), 1306–1318. doi: 10.1007/s40314-016-0396-7. doi: 10.1007/s40314-016-0396-7
    [24] D. Zhao, M. Ali, G. Murtaza, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 570 (2020). doi: 10.1186/s13662-020-03028-7.
    [25] D. Zhao, T. An, G. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Set. Syst., 396 (2020), 82–101. doi: 10.1016/j.fss.2019.10.006. doi: 10.1016/j.fss.2019.10.006
    [26] Y. Guo, G. Ye, D. Zhao, W. Liu, Some integral inequalities for log-h-convex interval-valued functions, IEEE Access, 7 (2019), 86739–86745. doi: 10.1109/access.2019.2925153. doi: 10.1109/access.2019.2925153
    [27] Z. Zhang, M. Ali, H. Budak, M. Sarikaya, On Hermite-Hadamard type inequalities for interval-valued multiplicative integrals, Commun. Fac. Sci. Univ., 69 (2020), 1428–1448. doi: 10.31801/cfsuasmas.754842. doi: 10.31801/cfsuasmas.754842
  • This article has been cited by:

    1. Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel, 2022, 7, 2473-6988, 15041, 10.3934/math.2022824
    2. Haiyang Cheng, Dafang Zhao, Guohui Zhao, Delfim F. M. Torres, New quantum integral inequalities for left and right log-ℏ-convex interval-valued functions, 2024, 31, 1072-947X, 381, 10.1515/gmj-2023-2088
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2570) PDF downloads(127) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog