Research article Special Issues

Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals

  • Received: 15 August 2021 Accepted: 17 October 2021 Published: 27 October 2021
  • MSC : 26A33, 26A51, 26D10

  • The objective of the authors is to introduce the new class of convex fuzzy-interval-valued functions (convex-FIVFs), which is known as $ p $-convex fuzzy-interval-valued functions ($ p $-convex-FIVFs). Some of the basic properties of the proposed fuzzy-interval-valued functions are also studied. With the help of $ p $-convex FIVFs, we have presented some Hermite-Hadamard type inequalities ($ H-H $ type inequalities), where the integrands are FIVFs. Moreover, we have also proved the Hermite-Hadamard-Fejér type inequality ($ H-H $ Fejér type inequality) for $ p $-convex-FIVFs. To prove the validity of main results, we have provided some useful examples. We have also established some discrete form of Jense's type inequality and Schur's type inequality for $ p $-convex-FIVFs. The outcomes of this paper are generalizations and refinements of different results which are proved in literature. These results and different approaches may open new direction for fuzzy optimization problems, modeling, and interval-valued functions.

    Citation: Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa. Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals[J]. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089

    Related Papers:

  • The objective of the authors is to introduce the new class of convex fuzzy-interval-valued functions (convex-FIVFs), which is known as $ p $-convex fuzzy-interval-valued functions ($ p $-convex-FIVFs). Some of the basic properties of the proposed fuzzy-interval-valued functions are also studied. With the help of $ p $-convex FIVFs, we have presented some Hermite-Hadamard type inequalities ($ H-H $ type inequalities), where the integrands are FIVFs. Moreover, we have also proved the Hermite-Hadamard-Fejér type inequality ($ H-H $ Fejér type inequality) for $ p $-convex-FIVFs. To prove the validity of main results, we have provided some useful examples. We have also established some discrete form of Jense's type inequality and Schur's type inequality for $ p $-convex-FIVFs. The outcomes of this paper are generalizations and refinements of different results which are proved in literature. These results and different approaches may open new direction for fuzzy optimization problems, modeling, and interval-valued functions.



    加载中


    [1] R. E. Moore, Interval arithmetic and automatic error analysis in digital computing, Ph.D. thesis, Stanford University, 1962.
    [2] T. Sunaga, Theory of an interval algebra and its application to numerical analysis, RAAG memoirs, 2 (1958), 547-564.
    [3] M. Warmus, Calculus of approximations, Bull. Acad. Pol. Sci., 4 (1956), 253-257.
    [4] R. E. Moore, Interval analysis, Englewood Clifs, NJ, USA: Prentice-Hall, 1966.
    [5] E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results Math., 32 (1997), 332-337. doi: 10.1007/BF03322144. doi: 10.1007/BF03322144
    [6] T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Set. Syst., 327 (2017), 31-47. doi: 10.1016/j.fss.2017.02.001. doi: 10.1016/j.fss.2017.02.001
    [7] T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110-125. doi: 10.1016/j.ins.2017.08.055.
    [8] H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306-1318. doi: 10.1007/s40314-016-0396-7. doi: 10.1007/s40314-016-0396-7
    [9] H. Roman-Flores, Y. Chalco-Cano, G. N. Silva, A note on Gronwall type inequality for interval-valued functions, In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013. doi: 10.1109/IFSA-NAFIPS.2013.6608616.
    [10] Y. Chalco-Cano, A. Flores-Franulic, H. Román-Flores, Ostrowski type inequalities for interval- valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457-472.
    [11] Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293-3300. doi: 10.1007/s00500-014-1483-6.
    [12] K. Nikodem, J. L. Snchez, L. Snchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aeterna, 4 (2014), 979-987.
    [13] J. Matkowski, K. Nikodem, An integral Jensen inequality for convex multifunctions, Results Math., 26 (1994), 348-353. doi: 10.1007/BF03323058. doi: 10.1007/BF03323058
    [14] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Set. Syst., 396 (2020), 82-101. doi: 10.1016/j.fss.2019.10.006. doi: 10.1016/j.fss.2019.10.006
    [15] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. doi: 10.1186/s13660-018-1896-3. doi: 10.1186/s13660-018-1896-3
    [16] D. L. Zhang, C. M. Guo, D. G. Chen, G. J. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178-204. doi: 10.1016/j.fss.2020.06.003. doi: 10.1016/j.fss.2020.06.003
    [17] H. Budak, T. Tunç , M. Z. Sarikaya, Fractional Hermite-Hadamard type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2019), 705-718. doi: 10.1090/proc/14741. doi: 10.1090/proc/14741
    [18] P. O. Mohammed, T. Abdeljawad, M. A. Alqudah, F. Jarad, New discrete inequalities of Hermite-Hadamard type for convex functions, Adv. Differ. Equ., 2021 (2021), 122. doi: 10.1186/s13662-021-03290-3. doi: 10.1186/s13662-021-03290-3
    [19] D. F. Zhao, M. A. Ali, G. Murtaza, Z. Y. Zhang, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 2020 (2020), 570. doi: 10.1186/s13662-020-03028-7. doi: 10.1186/s13662-020-03028-7
    [20] H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals, Math. Meth. Appl. Sci., 44 (2021), 104-123. doi: 10.1002/mma.6712. doi: 10.1002/mma.6712
    [21] F. F. Shi, G. J. Ye, D. F. Zhao, W. Liu, Some fractional Hermite-Hadamard-type inequalities for interval-valued coordinated functions, Adv. Differ. Equ., 2021 (2021), 32. doi: 10.1186/s13662-020-03200-z. doi: 10.1186/s13662-020-03200-z
    [22] S. S. Dragomir, On the Hadamard's inequlality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5 (2001), 775-788. doi: 10.11650/twjm/1500574995. doi: 10.11650/twjm/1500574995
    [23] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69. doi: 10.1186/s13662-020-2541-2. doi: 10.1186/s13662-020-2541-2
    [24] M. A. Alqudah, A. Kshuri, P. O Mohammed, T. Abdeljawad, M. Raees, M. Anwar, et al., Hermite-Hadamard integral inequalities on coordinated convex functions in quantum calculus, Adv. Differ. Equ., 2021 (2021), 264. doi: 10.1186/s13662-021-03420-x.
    [25] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 149. doi: 10.1186/s13662-021-03245-8. doi: 10.1186/s13662-021-03245-8
    [26] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. doi: 10.3390/sym13040673. doi: 10.3390/sym13040673
    [27] M. B. Khan, P. O. Mohammed, M. A. Noor, A. M. Alsharif, K. I. Noor, New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS Mathematics, 6 (2021), 10964-10988. doi: 10.3934/math.2021637. doi: 10.3934/math.2021637
    [28] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Int. Syst., 14 (2021), 1403-1418. doi: 10.2991/ijcis.d.210409.001. doi: 10.2991/ijcis.d.210409.001
    [29] P. D. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 2021. doi: 10.1007/s40747-021-00379-w.
    [30] M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math. Inf. Sci., 15 (2021), 459-470. doi:10.18576/amis/150408. doi: 10.18576/amis/150408
    [31] G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Int. Syst., 14 (2021), 1809-1822. doi: 10.2991/ijcis.d.210620.001. doi: 10.2991/ijcis.d.210620.001
    [32] M. B. Khan, P. O. Mohammed, M. A. Noor, K. M. Abualnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552-6580. doi: 10.3934/mbe.2021325. doi: 10.3934/mbe.2021325
    [33] U. W. Kulish, W. L. Miranker, Computer arithmetic in theory and practice, New York: Academic Press, 2014.
    [34] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301-317. doi: 10.1016/0165-0114(87)90029-7. doi: 10.1016/0165-0114(87)90029-7
    [35] S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129-132. doi: 10.1016/0165-0114(92)90256-4.
    [36] M. A. Noor, Fuzzy preinvex functions, Fuzzy Sets Syst., 64 (1994), 95-104. doi: 10.1016/0165-0114(94)90011-6.
    [37] P. D. Liu, M. B. Khan, M. A. Noor, K. I. Noor, On strongly generalized preinvex fuzzy mappings, J. Math., 2021 (2021), 6657602. doi: 10.1155/2021/6657602. doi: 10.1155/2021/6657602
    [38] M. B. Khan, M. A. Noor, K. I. Noor, A. T. A. Ghani, L. Abdullah, Extended perturbed mixed variational-like inequalities for fuzzy mappings, J. Math., 2021 (2021), 6652930. doi: 10.1155/2021/6652930. doi: 10.1155/2021/6652930
    [39] M. B. Khan, M. A. Noor, K. I. Noor, H. Almusawa, K. S. Nisar, Exponentially preinvex fuzzy mappings and fuzzy exponentially mixed variational-like inequalities, Int. J. Anal. Appl., 19 (2021), 518-541.
    [40] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Int. Syst., 14 (2021), 1856-1870. doi: 10.2991/ijcis.d.210616.001. doi: 10.2991/ijcis.d.210616.001
    [41] M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. L. G. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 175. doi: 10.3390/axioms10030175. doi: 10.3390/axioms10030175
    [42] Z. B. Fang, R. J, Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), 45. doi: 10.1186/1029-242X-2014-45.
    [43] M. Kunt, İ. İşcan, Hermite-Hadamard-Fejér type inequalities for p-convex functions, Arab J. Math. Sci., 23 (2017), 215-230. doi: 10.1016/j.ajmsc.2016.11.001.
    [44] L. Fejér, Über die bestimmung des sprunges der funktion aus ihrer Fourierreihe, J. für die reine und angewandte Mathematik, 142 (1913), 165-188. doi: 10.1515/crll.1913.142.165. doi: 10.1515/crll.1913.142.165
    [45] H. M. Srivastava, S. M. El-Deeb, Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution, Symmetry, 13 (2021), 1023. doi: 10.3390/sym13061023.
    [46] M. B. Khan, M. A. Noor, P. O. Mohammed, J. L. G. Guirao, K. I. Noor, Some integral inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, Int. J. Comput. Int. Syst., 14 (2021), 158. doi: 10.1007/s44196-021-00009-w. doi: 10.1007/s44196-021-00009-w
    [47] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Int. Syst., 14 (2021), 180. doi: 10.1007/s44196-021-00032-x.
    [48] M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Mathematics, 7 (2022), 349-370. doi: 10.3934/math.2022024. doi: 10.3934/math.2022024
    [49] M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. L. Guirao, Fuzzy mixed variational-like and integral inequalities for strongly preinvex fuzzy mappings, Symmetry, 13 (2021), 1816. doi: 10.3390/sym13101816. doi: 10.3390/sym13101816
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2160) PDF downloads(110) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog