Citation: Huizhang Yang, Wei Liu, Yunmei Zhao. Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system[J]. AIMS Mathematics, 2021, 6(2): 1087-1100. doi: 10.3934/math.2021065
[1] | J. K. Hunter, R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521. |
[2] | R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661 |
[3] | R. Camassa, D. D. Holm, J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-31. doi: 10.1016/S0065-2156(08)70254-0 |
[4] | H. Wu, M. Wunsch, Global existence for the generalized two-component Hunter-Saxton system, J. Math. Fluid Mech., 14 (2012), 455-469. doi: 10.1007/s00021-011-0075-9 |
[5] | B. Moon, Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system, J. Diff. Equ., 253 (2012), 319-355. doi: 10.1016/j.jde.2012.02.011 |
[6] | Z. G. Guo, S. R. Liu, W. M. Wang, On a variation of the two-component Hunter-Saxton system, Appl. Math. Comput., 259 (2015), 45-52. |
[7] | J. Lenells, Spheres, Kähler geometry, and the two-component Hunter-Saxton equation, Proc. R. Soc. A, 469 (2013), 20120726. |
[8] | M. Wunsch, The generalized Hunter-Saxton system, SIAM J. Math. Anal., 42 (2010), 1286-1304. doi: 10.1137/090768576 |
[9] | P. Olver, Applications of Lie Groups to Differential Equations, Grad. Texts in Math., vol. 107, Springer, New York, 1993. |
[10] | M. Craddock, K. Lennox, Lie group symmetries as integral transforms of fundamental solutions, J. Diff. Equ., 232 (2007), 652-674. doi: 10.1016/j.jde.2006.07.011 |
[11] | H. Z. Liu, Y. X. Geng, Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid, J. Diff. Equ., 254 (2013), 2289-2303. doi: 10.1016/j.jde.2012.12.004 |
[12] | H. Z. Yang, W. Liu, B. Y. Yang, et al. Lie symmetry analysis and exact explicit solutions of threedimensional Kudryashov-Sinelshchikov equation, Commun. Nonlinear Sci. Numer. Simulat., 27 (2015), 271-280 doi: 10.1016/j.cnsns.2015.03.014 |
[13] | S. J. Yang, C. C. Hua, Lie symmetry reductions and exact solutions of a coupled KdV-Burgers equation, Appl. Math. Comput., 234 (2014), 579-583. |
[14] | X. Lv, M. S. Peng, Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 2304-2312. doi: 10.1016/j.cnsns.2012.11.006 |
[15] | Q. S. Liu, R. G. Zhang, L. G. Yang, J. Song, A new model equation for nonlinear Rossby waves and some of its solutions, Phys. Lett. A 383 (2019), 514-525. |
[16] | Q. S. Liu, L. G. Chen, Time-space fractional model for complex cylindrical Ion-Acoustic waves in ultrarelativistic plasmas, Complexity, 2020 (2020), 9075823. |
[17] | Z. B. Bai, The introduction to the fractional differential equation boundary value problems, Math. Model. Appl., 6 (2017), 1-10 |
[18] | H. Z. Liu, J. B. li, Q. X. Zhang, Lie symmetry analysis and exact explicit solutions for general Burgers equation, J. Comput. Appl. Math., 228 (2009), 1-9. doi: 10.1016/j.cam.2008.06.009 |
[19] | H. Z. Liu, J. B. li, Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations, J. Comput. Appl. Math., 257 (2014), 144-156. |
[20] | S. C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations, Part Ⅰ: Examples of conservation law classifications, Eur. J. Appl. Math., 13 (2002), 545-566. doi: 10.1017/S095679250100465X |