Citation: Saudia Jabeen, Bandar Bin-Mohsin, Muhammad Aslam Noor, Khalida Inayat Noor. Inertial projection methods for solving general quasi-variational inequalities[J]. AIMS Mathematics, 2021, 6(2): 1075-1086. doi: 10.3934/math.2021064
[1] | F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2003), 773-782. |
[2] | A. S. Antipin, Minimization of convex functions on convex sets by means of differential equations, Diff. Equat., 30 (2003), 1365-1357. |
[3] | F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Var. Anal., 9 (2001), 3-11. doi: 10.1023/A:1011253113155 |
[4] | H. Attouch, M. O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria, J. Differ. Equations, 179 (2002), 278-310. doi: 10.1006/jdeq.2001.4034 |
[5] | H. Attouch, X. Goudon, P. Redont, The heavy ball with friction. I. The continuous dynamical system, Commun. Contemp. Math., 2 (2000), 1-34. doi: 10.1142/S0219199700000025 |
[6] | A. S. Antipin, M. Jacimovic, N. Mijajlovic, Extragradient method for solving quasivariational inequalities, Optimization, 67 (2018), 103-112. doi: 10.1080/02331934.2017.1384477 |
[7] | A. Bensoussan, J. L. Lions, Application des inequalities variationnelles en control eten stochastique, Paris: Dunod, 1978. |
[8] | A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202. doi: 10.1137/080716542 |
[9] | D. Chan, J. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res., 7 (1982), 211-222. doi: 10.1287/moor.7.2.211 |
[10] | G. Cristescu, L. Lupsa, Non-connected convexities and applications, Dordrecht: Kluwer Academic Publisher, 2002. |
[11] | G. Cristescu, M. Gaianu, Shape properties of Noors convex sets, In: Proceed. Twelfth Symposium of Mathematics and its Applications, Timisoara, 2009, 1-13. |
[12] | M. Jacimovic, N. Mijajlovic, On a continuous gradient-type method for solving quasi variational inequalities, Proc. Mont. Acad. Sci Arts., 19 (2011), 16-27. |
[13] | S. Jabeen, M. A. Noor, K. I. Noor, Inertial iterative methods for general quasi variational inequalities and dynamical systems, J. Math. Anal., 11 (2020), 14-29. |
[14] | S. Jabeen, M. A. Noor, K. I. Noor, Some new inertial projection methods for quasi variational Inequalities, Appl. Math. E Notes., 21 (2021), In press. |
[15] | D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Philadelphia: SIAM, 2000. |
[16] | Z. Kan, F. Li, H. Peng, B. Chen, X. G. Song, Sliding cable modeling: A nonlinear complementarity function based framework, Mech. Syst. Signal Pr., 146 (2021), 1-20. |
[17] | J. L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-512. |
[18] | P. E. Mainge, Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl., 344 (2008), 876-887. doi: 10.1016/j.jmaa.2008.03.028 |
[19] | N. Mijajlovic, J. Milojica, M. A. Noor, Gradient-type projection methods for quasi variational inequalities, Optim. Lett., 13 (2019), 1885-1896. doi: 10.1007/s11590-018-1323-1 |
[20] | M. A. Noor, An iterative scheme for class of quasi variational inequalities, J. Math. Anal. Appl., 110 (1985), 463-468. doi: 10.1016/0022-247X(85)90308-7 |
[21] | M. A. Noor, General variational inequalities, Appl. Math. Lett., 1 (1988), 119-122. doi: 10.1016/0893-9659(88)90054-7 |
[22] | M. A. Noor, Quasi variational inequalities, Appl. Math. Lett., 1 (1988), 367-370. doi: 10.1016/0893-9659(88)90152-8 |
[23] | M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 152 (2004), 199-277. |
[24] | M. A. Noor, Differentiable non-convex functions and general variational inequalities, Appl. Math. Comput., 199 (2008), 623-630. |
[25] | M. A. Noor, On a class of general variational inequalities, J. Adv. Math. Stud., 1 (2008), 31-42. |
[26] | M. A. Noor, On general Quasi variational inequalities, J. King Saud Univ. Sci., 24 (2012), 81-88. doi: 10.1016/j.jksus.2010.07.002 |
[27] | M. A. Noor, K. I. Noor, M. Th. Rassias, New trends in general variational inequalities, Acta Appl. Math., 170 (2020), 981-1064. |
[28] | M. A. Noor, W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Le Mathematiche, 49 (1994), 313-331. |
[29] | M. A. Noor, K. I. Noor, T. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math., 47 (1993), 285-312. doi: 10.1016/0377-0427(93)90058-J |
[30] | M. A. Noor, K. I. Noor, A. Bnouhachem, On unified implicit method for variational inequalities, J. Comput. Appl. Math., 249 (2013), 69-73. doi: 10.1016/j.cam.2013.02.011 |
[31] | M. A. Noor, K. I. Noor, T. M. Rassias, Iterative methods for variational inequalities, In Differential and integral inequalities, Springer, (2019), 603-618. |
[32] | H. Peng, F. Li, J. Liu, Z. Ju, A sympletic instaneous optimal control for robot trajectory tracking with differential-algebraic equation models, IEEE T. Ind. Eclect., 67 (2020), 3819-3829. doi: 10.1109/TIE.2019.2916390 |
[33] | B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz., 4 (1964), 791-803. |
[34] | N. Song, H. Peng, X. Xu, G. Wang, Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based on variational inequality, Mech. Mach. Theory, 154 (2020), 104053. doi: 10.1016/j.mechmachtheory.2020.104053 |
[35] | G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416. |
[36] | Y. Shehu, A. Gibali, S. Sagratella, Inertial projection-type method for solving quasi variational inequalities in real Hilbert space, J. Optim. Theory Appl., 184 (2019), 877-894. https://doi.org/10.1007/s10957-019-01616-6. |
[37] | H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256. doi: 10.1112/S0024610702003332 |