Research article

Analyzing Chebyshev polynomial-based geometric circulant matrices

  • Received: 13 July 2024 Revised: 13 September 2024 Accepted: 18 September 2024 Published: 26 September 2024
  • This paper explores geometric circulant matrices whose entries are Chebyshev polynomials of the first or second kind. Motivated by our previous research on $ r- $circulant matrices and Chebyshev polynomials, we focus on calculating the Frobenius norm and deriving estimates for the spectral norm bounds of these matrices. Our analysis reveals that this approach yields notably improved results compared to previous methods. To validate the practical significance of our research, we apply it to existing studies on geometric circulant matrices involving the generalized $ k- $Horadam numbers. The obtained results confirm the effectiveness and utility of our proposed approach.

    Citation: Zoran Pucanović, Marko Pešović. Analyzing Chebyshev polynomial-based geometric circulant matrices[J]. Electronic Research Archive, 2024, 32(9): 5478-5495. doi: 10.3934/era.2024254

    Related Papers:

  • This paper explores geometric circulant matrices whose entries are Chebyshev polynomials of the first or second kind. Motivated by our previous research on $ r- $circulant matrices and Chebyshev polynomials, we focus on calculating the Frobenius norm and deriving estimates for the spectral norm bounds of these matrices. Our analysis reveals that this approach yields notably improved results compared to previous methods. To validate the practical significance of our research, we apply it to existing studies on geometric circulant matrices involving the generalized $ k- $Horadam numbers. The obtained results confirm the effectiveness and utility of our proposed approach.



    加载中


    [1] P. J. Davis, Circulant Matrices, AMS Chelsea Publishing, 1994.
    [2] R. M. Gray, Toeplitz and circulant matrices: A review, Found. Trends Commun. Inf. Theory, 2 (2006), 155–239. http://dx.doi.org/10.1561/0100000006 doi: 10.1561/0100000006
    [3] I. Kra, S. R. Simanca, On circulant matrices, Not. AMS, 59 (2012), 368–377.
    [4] T. Iakymchuk, A. Rosado-Munoz, M. B. Mompéan, J. V. F. Villora, E. O. Osimiry, Versatile direct and transpose matrix multiplication with chained operations: An optimized architecture using circulant matrices, IEEE Trans. Comput., 65 (2016), 3470–3479. https://doi.org/10.1109/TC.2016.2538235 doi: 10.1109/TC.2016.2538235
    [5] A. Carmona, A. M. Encinas, S. Gago, M. J. Jiménez, M. Mitjana, The inverses of some circulant matrices, Appl. Math. Comput., 270 (2015), 785–793. https://doi.org/10.1016/j.amc.2015.08.084 doi: 10.1016/j.amc.2015.08.084
    [6] M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, 2004.
    [7] F. Di Benedetto, S. Serra-Capizzano, Optimal multilevel matrix algebra operators, Linear Multilinear Algebra, 48 (2000), 35–66. https://doi.org/10.1080/03081080008818658 doi: 10.1080/03081080008818658
    [8] S. Serra-Capizzano, A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numer. Math., 82 (1999), 117–142. https://doi.org/10.1007/s002110050413 doi: 10.1007/s002110050413
    [9] D. Bertaccini, M. K. Ng, Block $\omega$-circulant preconditioners for the systems of differential equations, Calcolo, 40 (2003), 71–90. https://doi.org/10.1007/s100920300004 doi: 10.1007/s100920300004
    [10] R. H. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482. https://doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474
    [11] M. Hariprasd, M. Venkatapathi, Circulant decomposition of a matrix and the eigenvalues of Toeplitz type matrices, Appl. Math. Comput., 468 (2024), 128473. https://doi.org/10.1016/j.amc.2023.128473 doi: 10.1016/j.amc.2023.128473
    [12] I. Kovacs, Isomorphisms of cubic Cayley graphs on dihedral groups and sparse circulant matrices, Acta Math. Sin. English Ser., 39 (2016), 618–632. https://doi.org/10.1007/s10114-023-1415-4 doi: 10.1007/s10114-023-1415-4
    [13] F. J. Macwilliams, Orthogonal circulant matrices over finite fields, and how to find them, J. Combin. Theory Ser. A, 10 (1971), 1–17. https://doi.org/10.1016/0097-3165(71)90062-8 doi: 10.1016/0097-3165(71)90062-8
    [14] G. Barrera, P. Manrique-Mirn, The asymptotic distribution of the condition number for random circulant matrices, Extremes, 25 (2022), 567–594. https://doi.org/10.1007/s10687-022-00442-w doi: 10.1007/s10687-022-00442-w
    [15] B. Amutha, R. Perumal, Public key exchange protocols based on tropical lower circulant and anti-circulant matrices, AIMS Math., 8 (2023), 17307–17334. https://doi.org/10.3934/math.2023885 doi: 10.3934/math.2023885
    [16] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, et al., CirCNN: Accelerating and compressing deep neural networks using block-circulant weight matrices, in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, (2017), 395–408. https://doi.org/10.1145/3123939.3124552
    [17] Z. Li, C. Ding, S. Wang, W. Wen, Y. Zhuo, C. Liu, et al., E-RNN: Design optimization for efficient recurrent neural networks in FPGAs, in 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), (2019), 69–80. https://doi.org/10.1109/HPCA.2019.00028
    [18] R. Díaz Fuentes, S. Serra-Capizzano, R. L. Sormani, $\omega$-circulant matrices: A selection of modern applications from preconditioning of approximated PDEs to subdivision schemes, Algorithms, 16 (2023), 328. https://doi.org/10.3390/a16070328 doi: 10.3390/a16070328
    [19] M. Bahsi, On the norms of $r$-circulant matrices with the hyperharmonic numbers, J. Math. Inequal., 10 (2016), 445–458. http://doi.org/10.7153/jmi-10-35 doi: 10.7153/jmi-10-35
    [20] Z. Pucanović, M. Pešović, Chebyshev polynomials and $r-$circulant matrices, Appl. Math. Comput., 437 (2023), 127521. https://doi.org/10.1016/j.amc.2022.127521 doi: 10.1016/j.amc.2022.127521
    [21] M. Pešović, Z. Pucanović, A note on $r$-circulant matrices involving generalized Narayana numbers, J. Math. Inequal., 17 (2023), 1293–1310. http://dx.doi.org/10.7153/jmi-2023-17-84 doi: 10.7153/jmi-2023-17-84
    [22] E Polatlı, On some properties of a generalized min matrix, AIMS Math., 6 (2023), 26199–26212. https://dx.doi.org/10.3934/math.20231336 doi: 10.3934/math.20231336
    [23] B. Radičić, On $k-$circulant matrices involving the Pell numbers, Results Math., 74 (2019), 200. https://doi.org/10.1007/s00025-019-1121-9 doi: 10.1007/s00025-019-1121-9
    [24] B. Radičić, On geometric circulant matrices with geometric sequence, Linear Multilinear Algebra, 72 (2024), 1555–1580. https://doi.org/10.1080/03081087.2023.2188156 doi: 10.1080/03081087.2023.2188156
    [25] S. Shen, J. Cen, On the bounds for the norms of $r$-circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput., 216 (2010), 2891–2897. http://dx.doi.org/10.1016/j.amc.2010.03.140 doi: 10.1016/j.amc.2010.03.140
    [26] B. Shi, The spectral norms of geometric circulant matrices with the generalized $k-$Horadam numbers, J. Inequal. Appl., 14 (2018), 14. https://doi.org/10.1186/s13660-017-1608-4 doi: 10.1186/s13660-017-1608-4
    [27] B. Shi, On the spectral norms of some circulant matrices with the trigonometric functions, J. Inequal. Appl., 225 (2019). https://doi.org/10.1186/s13660-019-2178-4
    [28] S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 160 (2005), 125–132. https://dx.doi.org/10.1016/j.amc.2003.08.126 doi: 10.1016/j.amc.2003.08.126
    [29] S. Solak, On the spectral norm of the matrix with integer sequences, Appl. Math. Comput., 232 (2014), 919–921. https://doi.org/10.1016/j.amc.2014.01.124 doi: 10.1016/j.amc.2014.01.124
    [30] N. Tuglu, C. Kizilates, On the norms of circulant and r-circulant matrices with the hyperharmonic Fibonacci numbers, J. Inequal. Appl., 253 (2015). https://doi.org/10.1186/s13660-015-0778-1
    [31] C. Kizilates, N. Tuglu, On the bounds for the spectral norms of geometric circulant matrices, J. Inequal. Appl., 312 (2016). https://doi.org/10.1186/s13660-016-1255-1
    [32] N. Belaggoun, H. Belbachir, On the spectral norms of $r$-circulant and geometric circulant matrices with the bi-periodic hyper-Horadam sequence, J. Math. Inequal., 17 (2023), 867–883. https://doi.org/10.7153/jmi-2023-17-55 doi: 10.7153/jmi-2023-17-55
    [33] G. Zielke, Some remarks on matrix norms, condition numbers and error estimates for linear equations, Linear Algebra Appl., 110 (1988), 29–41. https://doi.org/10.1016/0024-3795(83)90130-1 doi: 10.1016/0024-3795(83)90130-1
    [34] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, New York: Chapman and Hall, 2002. https://doi.org/10.1201/9781420036114
    [35] T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, Courier Dover Publications, 2020.
    [36] K. Acharya, D. Ghoshal, Edge detection using adjusted Chebyshev polynomials on contrast–enhanced images by modified histogram equalization, Int. J. Inf. Tech., 14 (2022), 3031–3038. https://doi.org/10.1007/s41870-022-01085-7 doi: 10.1007/s41870-022-01085-7
    [37] R. C. Gonzalez, R. E. Woods, S. L. Eddins, Digital Image Processing Using MATLAB, Gatesmark Publishing, 2010.
    [38] W. Cao, Z. Yan, Z. He, Z. He, A comprehensive survey on geometric deep learning IEEE Access, 8 (2020), 35929–35949. https://doi.org/10.1109/ACCESS.2020.2975067
    [39] M. Fey, J. E. Lenssen, F. Weichert, H. Müller, SplineCNN: Fast geometric deep learning with continuous b-spline kernels, in Proceedings of the IEEE Conference on CVPR, (2018), 869–877.
    [40] M. Monti, M. Bronstein, X. Bresson, Geometric matrix completion with recurrent multi–graph neural network, Adv. NIPS, (2017), 3700–3710.
    [41] M. Anđelić, Z. Du, C. M. da Fonseca, E. Kiliç, A matrix approach to some second-order difference equations with sign-alternating coefficients, J. Differ. Equations Appl., 26 (2020), 149–162. https://doi.org/10.1080/10236198.2019.1709180 doi: 10.1080/10236198.2019.1709180
    [42] R. G. Buschman, Fibonacci numbers, Chebyshev polynomials generalizations and difference equations, Fibonacci Quart, 1 (1963), 1–8.
    [43] C. M. da Fonseca, Unifying some Pell and Fibonacci identities, Appl. Math. Comput., 236 (2014), 41–42. https://doi.org/10.1016/j.amc.2014.03.064 doi: 10.1016/j.amc.2014.03.064
    [44] G. Udrea, A note on the sequence $(W_n)_{n\geqslant 0}$ of A.F. Horadam, Port. Math., 53 (1996), 143–155.
    [45] Y. Yazlik, N. Taskara, A note on generalized $k$-Horadam sequence, Comput. Math. Appl., 63 (2012), 36–41. https://doi.org/10.1016/j.camwa.2011.10.055 doi: 10.1016/j.camwa.2011.10.055
    [46] R. A. Horn, R. Mathias, An analog of the Cauchy-Schwarz inequality for Hadamard products and unitarily invariant norms, SIAM J. Matrix Anal. Appl., 11 (1990), 481–498. https://doi.org/10.1137/0611034 doi: 10.1137/0611034
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(45) PDF downloads(7) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog