Research article

Global solutions to the Cauchy problem of BNSP equations in some classes of large data

  • Received: 25 June 2024 Revised: 05 September 2024 Accepted: 12 September 2024 Published: 26 September 2024
  • In this paper, we obtained the global existence and large time behavior of the solution for bipolar Navier-Stokes-Poisson equations under the partially smallness assumption of the initial data. Due to the complexity of bipolar Navier-Stokes-Poisson equations, we chose Green's function method instead of the classical energy method and thus discussed the regularity criterion under decaying structures in time instead of only integrability of time variable. It made the whole proof more simple and clear, meanwhile, resulted in the large time decaying estimates of the solution. It also showed the advantage of Green's function method in the study of global existence in the large perturbation framework.

    Citation: Jie Qi, Weike Wang. Global solutions to the Cauchy problem of BNSP equations in some classes of large data[J]. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255

    Related Papers:

  • In this paper, we obtained the global existence and large time behavior of the solution for bipolar Navier-Stokes-Poisson equations under the partially smallness assumption of the initial data. Due to the complexity of bipolar Navier-Stokes-Poisson equations, we chose Green's function method instead of the classical energy method and thus discussed the regularity criterion under decaying structures in time instead of only integrability of time variable. It made the whole proof more simple and clear, meanwhile, resulted in the large time decaying estimates of the solution. It also showed the advantage of Green's function method in the study of global existence in the large perturbation framework.



    加载中


    [1] F. M. Huang, J. Li, A. Matsumura, Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197 (2010), 89–116. https://doi.org/10.1007/s00205-009-0267-0 doi: 10.1007/s00205-009-0267-0
    [2] F. M. Huang, A. Matsumura, Z. P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 55–77. https://doi.org/10.1007/s00205-005-0380-7 doi: 10.1007/s00205-005-0380-7
    [3] Y. I. Kanel, Cauchy problem for the equations of gas dynamics with viscosity, Sib. Math. J., 20 (1979), 208–218.
    [4] S. Kawashima, System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics, Ph.D Thesis, Kyoto University, 1983.
    [5] S. Kawashima, A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97–127. https://doi.org/10.1007/BF01212358 doi: 10.1007/BF01212358
    [6] S. Kawashima, T. Nishida, , Global solutions to the initial value problem for the equations of one-dimensional motion of visocus polytropic gases, J. Math. Kyoto Univ., 21 (1981), 825–837.
    [7] T. Kobayashi, Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbb{R}^3$, Commun. Math. Phys., 200 (1999), 621–659. https://doi.org/10.1007/s002200050543 doi: 10.1007/s002200050543
    [8] X. D. Huang, J. Li, Z. P. Xin, Global well-posedness of classicial solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Commun. Pure Appl. Math., 65 (2012), 549–585. https://doi.org/10.1002/cpa.21382 doi: 10.1002/cpa.21382
    [9] X. D. Huang, J. Li, Global classicial and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, Arch. Ration. Mech. Anal., 227 (2018), 995–1059. https://doi.org/10.1007/s00205-017-1188-y doi: 10.1007/s00205-017-1188-y
    [10] T. P. Liu, Y. N. Zeng, Large time behavier of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Am. Math. Soc., 599 (1997), 1–45.
    [11] T. P. Liu, W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension, Commun. Math. Phys., 196 (1998), 145–173. https://doi.org/10.1007/s002200050418 doi: 10.1007/s002200050418
    [12] T. Kobayashi, T. Suzuki, Weak solutions to the Navier-Stokes-Poisson equation, Adv. Math. Sci. Appl., 18 (2008), 141–168.
    [13] Z. Tan, Y. J. Wang, Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force, Nonlinear Anal., 71 (2009), 5866–5884. https://doi.org/10.1016/j.na.2009.05.012 doi: 10.1016/j.na.2009.05.012
    [14] A. Matsumura, T. Nishida, The initial value problems for the eqautions of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104.
    [15] H. L. Li, A. Matsumura, G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbb{R}^3$, Arch. Ration. Mech. Anal., 196 (2010), 681–713. https://doi.org/10.1007/s00205-009-0255-4 doi: 10.1007/s00205-009-0255-4
    [16] C. C. Hao, H. L. Li, Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. Differ. Equations, 246 (2009), 4791–4812. https://doi.org/10.1016/j.jde.2008.11.019 doi: 10.1016/j.jde.2008.11.019
    [17] Z. Tan, G. C. Wu, Global existence for the non-isentropic compressible Navier-Stokes-Poisson system in three and higher dimensions, Nonlinear Anal. Real World Appl., 13 (2012), 650–664. https://doi.org/10.1016/j.nonrwa.2011.08.005 doi: 10.1016/j.nonrwa.2011.08.005
    [18] S. Q. Liu, X. Y. Xu, J. W. Zhang, Global well-posedness of strong solutions with large oscillations and vacuum to the compressible Navier-Stokes-Poisson equations subject to large and non-flat doping profile, J. Differ. Equations, 269 (2020), 8468–8508. https://doi.org/10.1016/j.jde.2020.06.006 doi: 10.1016/j.jde.2020.06.006
    [19] X. Y. Xu, J. W. Zhang, On the Cauhcy problem of 3D compressible, viscous, heat-conductive Navier-Stokes-Poisson equations subject to large and non-flat doping profile, Calc. Var. Partial Differ. Equations, 61 (2022), 1–35. https://doi.org/10.1007/s00526-022-02280-x doi: 10.1007/s00526-022-02280-x
    [20] G. J. Zhang, H. L. Li, C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^3$, J. Differ. Equations, 250 (2011), 866–891. https://doi.org/10.1016/j.jde.2010.07.035 doi: 10.1016/j.jde.2010.07.035
    [21] W. K. Wang, Z. G. Wu, Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions, J. Differ. Equations, 248 (2010), 1617–1636. https://doi.org/10.1016/j.jde.2010.01.003 doi: 10.1016/j.jde.2010.01.003
    [22] Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differ. Equations, 253 (2012), 273–297. https://doi.org/10.1016/j.jde.2012.03.006 doi: 10.1016/j.jde.2012.03.006
    [23] W. K. Wang, X. Xu, The decay rate solution for the bipolar Navier-Stokes-Poisson system, J. Math. Phys., 55 (2014), 091502. https://doi.org/10.1063/1.4894766 doi: 10.1063/1.4894766
    [24] C. Zou, Large time behaviors of the isentropic bipolar compressible Navier-Stokes-Poisson system, Acta Math. Sci., 31 (2011), 1725–1740. https://doi.org/10.1016/S0252-9602(11)60357-3 doi: 10.1016/S0252-9602(11)60357-3
    [25] H. L. Li, T. Yang, C. Zou, Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system, Acta Math. Sci., 29 (2009), 1721–1736. https://doi.org/10.1016/S0252-9602(10)60013-6 doi: 10.1016/S0252-9602(10)60013-6
    [26] L. Hsiao, H. L. Li, T. Yang, C. Zou, Compressible non-isentropic bipolar Navier-Stokes-Poisson system in $\mathbb{R}^3$, Acta Math. Sci., 31 (2011), 2169–2194. https://doi.org/10.1016/S0252-9602(11)60392-5 doi: 10.1016/S0252-9602(11)60392-5
    [27] J. Qi, W. K. Wang, Global solutions to the Cauchy problem of viscous shallow water equations in some classes of large data, Discrete Contin. Dyn. Syst., 44 (2024), 3572–3598. https://doi.org/10.3934/dcds.2024070 doi: 10.3934/dcds.2024070
    [28] J. Fan, S. Jiang, Y. Ou, A blow-up criterion for the compressible viscous heat-conductive flows, Ann. Inst. H. Poincare Anal. Non Lineaire, 27 (2010), 337–350. https://doi.org/10.1016/j.anihpc.2009.09.012 doi: 10.1016/j.anihpc.2009.09.012
    [29] X. D. Huang, Z. P. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equation, Sci. China Math., 53 (2010), 671–686. https://doi.org/10.1007/s11425-010-0042-6 doi: 10.1007/s11425-010-0042-6
    [30] W. K. Wang, Y. C. Wang, The $L^{p}$ decay estimates for the chemotaxis-shallow water system, J. Math. Anal. Appl., 474 (2019), 640–665. https://doi.org/10.1016/j.jmaa.2019.01.066 doi: 10.1016/j.jmaa.2019.01.066
    [31] Z. G. Wu, W. K. Wang, Pointwise estimates for bipolar compressible Navier-Stokes-Poisson equations in dimension three, Arch. Ration. Mech. Anal., 226 (2017), 587–638. https://doi.org/10.1007/s00205-017-1140-1 doi: 10.1007/s00205-017-1140-1
    [32] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, American Mathematical Society, 2006.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(40) PDF downloads(3) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog