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Abstract: In this paper, we obtained the global existence and large time behavior of the solution for
bipolar Navier-Stokes-Poisson equations under the partially smallness assumption of the initial data.
Due to the complexity of bipolar Navier-Stokes-Poisson equations, we chose Green’s function method
instead of the classical energy method and thus discussed the regularity criterion under decaying struc-
tures in time instead of only integrability of time variable. It made the whole proof more simple and
clear, meanwhile, resulted in the large time decaying estimates of the solution. It also showed the
advantage of Green’s function method in the study of global existence in the large perturbation frame-
work.
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1. Introduction

The bipolar Navier-Stokes-Poisson system has been used to simulate the transport of charged parti-
cles under the influence of electrostatic force governed by the self-consistent Poisson. In this paper, we
are concerned with the Cauchy problem of the bipolar Navier-Stokes-Poisson system in 3 dimensions:

d:p1 + div(piuy) = 0,

Oy + div(ipiu; @ uy) + VPi(01) = u1Auy + 1o Vdivuy + p1 VO,

0,02 + div(pouy) =0, (L.1)
Oy + div(pruy @ up) + VPy(0,) = 1 Auy + o Vdivuy — po VO,

AD = p; — py, limpyy_,0o P(x, 7) = 0,
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with initial data

(o1, U1, 02, Uz, VO)(x,0) = (P10, U1,0, 02,0, U2,0, VP)(X), x € R’. (1.2)

Here p;(x, 1), u;i(x, 1), ®(x, t), and P;(p)((x, t) represent the fluid density, velocity, self-consistent electric
potential and pressure. The viscosity coefficients satisfy the usual physical conditions p; > 0, 3u; +
2u, > 0. We assume that P;(p) satisfies P/(p) > 0 for all p > 0 and P}(p) = 1, where p > 0 denotes
the prescribed density of positive charged background ions, and in this paper is taken as a positive
constant. Without loss of generality, we take p to be 1. For the initial data (o0, 410,020, U20), W€
consider small perturbations of (p, 0, p,0), in which p is defined as before and taken to be 1, and we
assume that p; o, 02,0 has positive lower bound and upper bound.

Now, we review some previous works on the Cauchy problem for some related models. There has
been a lot of studies for the compressible Navier-Stokes system (CNS) for either isentropic or non-
isentropic cases on the existence, stability, and LP-decay rates with p > 2. For the results of small
solutions, see [1,2] and [3-7], where the authors use the (weighted) energy method together with
spectrum analysis, and for the results of partial small solutions (under the setting that the initial data
is of small energy but possibly large oscillations), see [8, 9] and the references therein. On the other
hand, many scholars also use the method of Green’s function to analyze the asymptotic behavior of a
specific system, for example, by using the method of Green’s function, Liu and Zeng [10] first studied
the point-wise estimates of solutions to the general hyperbolic-parabolic equations in one dimension.
Later, Liu and Wang [11] give the point-wise estimates of diffusion wave for the Navier-Stokes systems
in odd multi-dimension and explain the generalized Huygens’ principle for the Navier-Stokes systems.

For the unipolar Navier-Stokes-Poisson system (NSP), there is also a mass of results for the Cauchy
problem when the initial data (pg, up) is a small perturbation around the constant state (p,0). For
instance, the global existence of weak solutions was obtained by [12, 13]; the framework of Mat-
sumura and Nishda [14,15] shows the global existence of small strong solutions in H" Sobolev spaces.
In [16,17], the authors obtain the global existence of small solutions in some Besov spaces. For the so-
lutions which are of small energy but possibly large oscillations, see [18,19] and the references therein.
In fact, the NSP system is a hyperbolic-parabolic system with a nonlocal term arising from the electric
field VO. From the analysis of Green’s function, the symbol of this nonlocal term is singular in the
long wave of the Green’s function and it destroys the time-decay rate for the velocity. As we know, for
the CNS system, when the initial perturbation pg — 1,4y € L’ N H", with pnear 1,and N > 3isa large
enough integer for the nonlinear system, then the solutions have L? optimal decay rate

o = Luw)®llz < CA + 57367,

In [15,20,21], the authors survey the decay rate of solutions for the NSP system and they observed that
the electric field destroys the decay rate of the solutions, i.e., when the initial perturbation pg — 1, 1y €
L N HY, with p € [1,2], then the solutions have L? optimal decay rate

1

_§(l_,) _i(l_l)_,_l
o= D@l < CA+ )22, u@®ll2 < C(A + 1) 27272,

In [22], the author gives another comprehension toward the effect of the electric field on the decay rate
of the solutions for the NSP system. The author believes that it is natural to assume that V@, € L?,
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and with this condition in hand, we can obtain the L? optimal decay rate for the linear NSP system as
follows:
_i(l_l)_l _é(l_l)
o = D@l < CA + 1) 27272, flu@®)ll2 < C(1+1) 2772
In this sense, we see that the electric force enhances the decay rate of the density with the factor %
compared with the CNS system.

For the bipolar Navier-Stokes-Poisson system (BNSP), Wang and Xu [23] obtain the global exis-
tence of small solutions and the decay rate of the solutions. [24-26] observed the large time behavior
of the BNSP system. The global existence of the solutions for the BNSP system under the partial
smallness of the initial value is still an open problem, and the aim of this paper is to obtain the global
existence of the solution to the system (1.1) and (1.2) provided that the initial data is partially small,
which means that we require the initial value itself to be small and its derivative only to be bounded.
In other words, its initial value is large in some classes, that is, its derivative can be large except for the
initial value itself. In this paper, we first establish a regularity criterion to obtain the uniform bounded-
ness of the solutions, and then combine abstract bootstrap argument to extend the local solutions. In
order to prove the global existence of solution under the condition of initial data is partially small, the
general regularity hypothesis requires that the solution is bounded with respect to time in the sense of
some Sobolev norm, and another important condition is that the solution is integrable with respect to
the time variable, which is necessary to obtain a consistent estimate of the solution through Gronwall’s
inequality.

However, in this paper, it is difficult to obtain the regularity condition of integrability due to the more
complex nonlinear structure in BNSP equations. The classical regularity criterion is established based
on the energy method and the decay property in time variable is usually captured by integrability. It is
always difficult and not applicable for the bootstrap argument. In fact, in [27] for the global existence
of solutions for shallow water equations with partially large initial data, we applied Green’s function
method and replaced the integrability condition by detailed decaying structure in time variable, which
makes the bootstrap argument more clear and concise.

The linear and nonlinear structures of BNSP equations discussed in this paper are far more com-
plicated, and we can imagine that it could be quite difficult and complex for the energy method. Even
in the construction of Green’s function, compared with the previous case for shallow water equations,
BNSP equations are hyperbolic-parabolic-elliptic coupled ones and the structure is very complicated.
The elliptic structure provides a nonlocal operator and also causes the lack of symmetry. These are all
troubles we need to overcome in this paper.

Before we list the main result, we introduce some notations. Throughout this paper, d, stands for
the derivative with respect to time variable and f; = d,f. The symbol 0,f(i = 1,2,3) means partial
derivative with respect to x;, oF

6,~f = 6_)(,'1
We use the notation V¥ f to mean the partial derivative of order k. That is, if k is a nonnegative integer,
then
VEf = (V" fla = (a1, @2, @3), el = k)

is a set of all partial derivatives of order k, endowed with the norm

IVEAIR, = > IV A1,

lar|=k
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where
Vef:=0710707 f, a; > 0.

X1 7 xp T3

Let A be a quasi-differential operator defined as follows:
A? = (=A)?.
The main result of this paper is the following:

Theorem 1.1. Let (pl,O -1, U1,0,020 — 1, Uz 0, Vd,) € HS+1(S >4), and

lGor0 = L ui g, 020 = 1, 20, VOO 12w3) 11 r3) < Eo,

where E is sufficiently small, then the Cauchy problem (1.1) and (1.2) has a global solution in time
that satisfies

(pl - 1’ Uy, P2 — 1’ MZ) € LDO([O, OO), HS-H)’ V(ul’ uZ) € Lz([()? OO);HS+1),
For2 < p < +ooand a = (a1, @z, @3), || < s — 1, it holds
ID* (o1 = Lur, p2 = 1,u:)C, Dllr < C(L+ 17307975,

Remark 1.1. In Theorem 1.1, we only assume the norm of the initial datum p o, 20, U1, U2 and

V@, are small enough, but for the derivatives of pi, 2.0, U1.0, U20, and VOy, we assume that they are
bounded.

The rest of this paper is organized as follows. In Section 2, we establish the uniform time estimate
of solutions. In Section 3, we analyze the Green’s function of the linear BNSP system, and the different
properties of the Green function at high and low frequencies are obtained. In Section 4, we complete
the partial proof of Theorem 1.1, i.e., we mainly obtain the existence of the solutions. In this paper, we
also obtain the decay rate of the solutions, and the reader can see Sections 4 and 5 for details.

Throughout this paper, we denote by C a positive constant that varies from line to line.

2. Uniform estimation of solutions
We reformulate the Cauchy problem (1.1) and (1.2) about constant state (1,0, 1, 0) as follows:

0,01 + divuy = —div(p uy),

oy — i Auy — upVdivuy + Vo — VO
P/ll(i;f)l) - DVp; - %},,(MAW + uxVdivuy),

0,02 + divuy = —div(p,u,), (2.1)
Oy — Ay — o Vdivu, + Vo, + VO

= —tty - Vity = (22 = 1)V — 2 (i Auy + o Vdlivuy),

AD = P1— P2, lim|x|_>oo O(x,1) =0,

= —uy - Vuy — (
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where we also note (o; — 1, uy,p, — 1, un) as (o1, uy, 2, up) without causing confusion. In this section,
we will get the estimates of the solutions for the system (2.1) under the assumption that for any fixed
0<T <400, tel0,T],

(Vo155 V1 Dl (235 IV 2Dl ey Vit (D)l zzy) < C(1+ D72, (2.2)

and
1G01,05 02,05 1,0, U2,0, VP22 11 < E, (2.3)

where E is a positive constant which is sufficiently small. Similar to reference [28,29], we call Eq
(2.2) the regularity criterion. In this section, based on this regularity criterion, we get a consistent
estimate of the solutions of the equations and its derivatives.

We first define

Pi(l+p)
1+

Pyl+p)
1+

o

Fi(p) = “1+p

1, Fap) = 1, H(p)

To do this end, from (2.2), (2.3), and Gagliardo-Nirenberg’s inequality, we know that there exists a
sufficiently small £, > O that satisfies

loillL=@®3) < €1 and ||pall~@3) < &1. (2.4)

First of all, from (2.4) , we obtain

<l+p < <l+p <=

b

(SN NIN\S)
W
Wl &~

W1 N

Hence, by the definition of F(p), F»(p), and H(p), we immediately have

[ (o0l [H(pD)l < Cloil, [F2(p2)l, [H(p2)] < Clpal,

(2.5)
IFP ), IF (021, IHO (o)), IHP ()| < C for any k > 1.

Let us start with a lemma that will be frequently used later.

Lemma 2.1. [22] Assume that ||p||~®3) < 1, and f(p) is a smooth function of p with bounded deriva-
tives of any order, then for any integer k > 1, we have

||Vk(f(p))||L°°(R3) < C||Vkp||L°°(R3)-

We obtain the estimates of the low order derivatives of the system (2.1) first.

Lemma 2.2. Under the assumption (2.2) and (2.4), we have
||(P1 s Uy, P2, Uz, V(D)||L°°(0,T;L2(R3)), 1(Vuy, VM2)||L2(0,T;L2(R3)) <C,
where C is a constant depending on ||(01.0, 02.05 41,05 42,0, VP0)I|12-

Electronic Research Archive Volume 32, Issue 9, 5496-5541.



5501

Proof. Multiplying the Eqs (2.1), (2.1),, (2.1)3, and (2.1)4 by p1, uy, p2, o, respectively, and integrat-
ing the equations over R?, we obtain

1
39, f © + P + 02 + lusP)dx
R3

+ 1 f (Vir > + |Vuo|Hdx + o f (divu, |* + |divuy|*)dx
R3 R3

= —f VO(u, — up)dx —f div(piuy)pdx —f div(paun)pordx —f up - Vuy - udx
R3 R3 R3 R3

(2.6)
- f3 up - Vuy - updx — f3 Fi(p)uy - Vpidx - f Fa(p2)uy - Vpodx
R R R3

- H(p])(/llAI/tl + ﬂsziVM])M]dx - H(pz)(/l]AMQ + ﬂsziVMz)Mde
R3 R3
9

=: A,’.
i=1

Now we estimate A; one by one. Because the self-consistent potential ®(x, ¢) is coupled with the density
through the Poisson equation, using Holder’s inequality and Cauchy’s inequality, for A, it holds

A= —f VO(u, — uy)dx
R3

—f Odiv(uy — uy)dx
R3

- f3 O(=0,p1 — div(piur) + 0,02 + div(prur))dx

R

f ®o,(p1 — pr)dx + f O(div(pyuy) — div(pru))dx 2.7)

R3 R

:f q)atA(Ddx+f O(div(puy) — div(puy))dx
R3 R3

1
= -0, IVCDIde—f VO(piu; — pour))dx

2 R3 R3

1
<500 | IVOPdx + (IVOI7, + lluall7, + leeall7)lorllzs + lloallzes)-
R

For A4 and As, by Holder’s inequality, we easily check that
Al + |As| < IVl Nl 17, + [1VaealzllaalI7 (2.8)
Integrating by parts, and using Holder’s inequality and Cauchy’s inequality, it holds
Aal + |As] < Vo1l a7, + lloall72) + IVoall= (luall7, + lloall72)- (2.9)

By the definition of F;(p) and F,(p), using Holder’s inequality and Cauchy’s inequality, and from (2.5),
we have

|Asl + 1A7] < IVpull=lear 7, + llo1l172) + 11V oallleeal7, + loall7)- (2.10)
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Also integrating by parts, using Holder’s inequality and Cauchy’s inequality, and by (2.5) and Lemma
(2.1), we have

|A8| + |A9| = | — j.z VH(pl)(,uIVul +/,12divu1)u1dx — f3 H(pl)(,uIVul +/12diVM1)VM1dX|
RS R

+| - f VH(p,)(u1 Vuy + ppdivuy)uydx — f H(0)(u Vs + podivuy)Vu,ydx| (2.11)
R3 .

2

2 2 2 2 2
< IVoillzslluill, + €llVilly, + 1IVoallzslluall, + €llViually,

where we take € small enough such that € < 1. Plugging the estimates for A;—Ay, i.e., (2.7)—(2.11) into
(2.6), we get

1
531 f}(ﬁ% + |y P + p5 + luaf® + [VOP)dx
R

+ 10 f (IVur [ + [Vuo|Hdx + o f (divi,|* + |divin[*)dx
R3 R3

< (lollzs + lo2ll=)AV I, + llull7, + lluall7,)
+ (IVpulls + IVl + IV ll=)(leer |7 + lloall7)
+ (IVpall + IVpallze + IVuallz=)leeall7, + lloall7)-

(2.12)

Using Gronwall’s inequality, we complete the proof of the lemma. O

In the following, we would like to give the high regularity estimates of the solutions.

Lemma 2.3. Under the assumption (2.2) and (2.4), we have
Vo1, Vuy, Vs, Vuy, V2CD)||L°°(0,T;L2(R3)), ||(V2M1, V2M2)||L2(0,T;L2(R3)) <C,

where C is a constant depending on ||(Vp1.0, V2.0, Vi1 0, Vita g, V2Op)| 2.

Proof. We operate each equation of (2.1) with operator V to derive

0,Vp, + Vdivu, = -Vdiv(p,u,),

0,Vu, — 1, VAu, — u,VVdivu, + VVp, — VVO

= —V(u; - Vuy) — V((Pil(i;f’l) - 1)Vp)) - V(li;)l (u1Auy + usVdivuy)), 2.13)
0,Vp, + Vdivu, = —=Vdiv(pu,),

0,Vuy, — u1VAu, — u,Vvdivu, + VVp, + VVO

= —V(us - Vaz) — V(L2 _ 1)Vp,) — V(L2 (11 Auy + pa Vdiviny)),

1+p2 I+p2

and multiplying the above equations by Vpi, Vu;, Vp,, andVu,, respectively, and integrating over R?
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yields

1
20, f (il + VP +19paf + Vuo e+ g f (V2 + V2 )dx
R R3

+ o | (\Vdivuy|* + |Vdivuy|)dx + f V2OV (uy — uy)dx
R3 R3

:—f Vdiv(plul)Vpldx—f Vdiv(pzuz)szdx—f V(uy - Vu)Vudx
R3 R3 R3

(2.14)
_ f Vuts - Vito)Vitadx — f V(F1(p) V) Vitydx — f V(F2(ps)Vpa)Vitrdx
R3 R3 R3

— f V(H(pl)(plAul + uZVdivul))Vuldx - f V(H(pz)([llAl/lz + ,leVdiVMz))VLtde
R3 R3
8

=: Z B;.
i=1

For the last term on the left-hand side of (2.14), since ®(x, ) satisfies the Poisson equation, we have
f V2OV (uy — uy)dx
R3

:f VOVdiv(u, — uy)dx
® (2.15)

__ f V01— p2) + divipats — prun)d
R

1
= =9, f IV2®|*dx + f V2Odiv(p u, — pau)dx.
2 R3 R3

For the term fR3 V2®div(piu; — pous)dx, using Holder’s inequality and Young’s inequality, we have

|f V2Odiv(p uy — paur)dx]
R3

< lloalle= (Ve lI7, + IV @I, + llull=(IVpull7, + IVOII7,)
+loall= Vil + IV @I17) + lluall = IVl + V2 OIIZ,).

(2.16)

Now, we estimate each term on the righthand side of (2.14). Holder’s inequality and Young’s inequality
gives

|B| < f} |P1||V2u1||Vpl|dx + f} |VM1||V101|2dX
R R3

< C@lll7=11Vp1ll7, + elV2ully, + IVer =V pu 7.,

(2.17)

where € is a positive number that is small enough to be determined, as € appears in the following
inequalities. Similar to the estimate of B;, we obtain

1By < f 1l Vol + f VuslVpald
R R

< C@lpalli=lIVpall7, + elV2usll7, + IVetall =1Vl

(2.18)
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Simple computation gives
2 2
B3| + |Bs| < [Vinr [V} + IVl [[Vaa [

By the definition of F; and F’, integrating by parts, and using Holder’s inequality and Young’s inequal-
ity, from (2.5) we have

IBs] + 1B = | - f Filon)VprdivVuyd] + | — f (o) VprdivVinsda
]R3 R3

< C@lp1lI7=IIVp1ll7, + ellV?ull7, + C(@lpallz=IVpall7, + ellV2uall7,.

(2.19)

Integrating by parts, by (2.5) and Lemma 2.1, we obtain
|B7| + |Bs|
=|-u fR 3 Hp) (V2> + V2u, Vdivuy)dx| + | — po fR 3 H(p>)(\Vusl* + V2u,Vdivuy)dx|  (2.20)
< ([V2ull7, + IVdivi|[7,).

Consequently, by (2.14)—(2.20) and taking € < 1, we deduce
1
Eatf (Voil? + [V + [Vpol* + [Vuol* + [V O*)dx
R3

+ 1 f (V2ui? + |Vuo ) )dx + 1o f (\Vdivi,|* + |Vdivu,|*)dx
R3 R3

<(loillze + 1IVullzs + lulls + laall)II Vs lI7 2.21)
+ (loallZe + Vsl + Nty llzs + Nl ValI7
+ (IVurllz= + llollzs + lloallz) Ve 17,
+ (IVitallz= + lloullzs + lloall)IVaall,
+ (loillzs + lloallzs + lleerllzs + lluall =) IV DI

With the help of Gronwall’s inequality, we complete the proof of the lemma. O

Lemma 2.4. Under the assumption (2.2) and (2.4), we have
||(V2P1, Vzul, Vzpz, Vz”z» V3(D)”L°°(O,T;L2(R3))’ ||(V3M1, V3M2)||L2(O,T;L2(R3)) <C,

where C is a constant depending on II(Vzpl,O, Vng,o, Vzul,o, V2u2,0, V3dy)||;2.

Proof. Operating V? on each equation of (2.1) gives

0,V?p1 + Vdivu; = =V*div(p u;),
0.Viu; — i1, V?*Auy — 1, V*Vdivu, + V?Vp, — V2V D

= V2 Vi) = V(D — 1)) — V2 oy Ay + o Vdiviy), .
0,V?p, + V2divu, = —=V2div(p,uy), '
0.V u, — 111V Auy — 11, V*Vdivu, + V?Vp, + V2V D

= —V2(u - Viy) — V(22 — 1)Vpy) = VA (i Auy + o Vdivun)),

1402
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and multiplying the above equations by V2p,, V?u;, V?p,, and V?u,, respectively, and integrating over
R3 gives

1
Eat f (V201 + [V2ui > + [V2pal” + V2o )dx + f (V2w * + [Vup|*)dx
R3 R3
+ s f (V2divuy |* + |V divuo|P)dx + f VAVOV3(uy — uy)dx
R3 R3

=— f V2div(p1u)Vp1dx — f V2div(pauz) V2 prdx — f V2(uy - Vur)Vuidx
R3 R3 R3

(2.23)
- f V2(uy - Vi) Vupdx — f V2(F1(p)Vp1)Vudx — f V2(F2(p2)Vp2)Vurdx
R3 R3 R3
- f V2(H(p)) (1 Auy + oVdiviy ) Vudx — f V2(H(p2) (11 Az + 112V divies))V:urdx
R3 R3
8
=: Z Ci-
i=1
Similar to the proof of Lemma 2.3, for the last term on the left-hand side of (2.23), we get
f VAVOV(u, — uy)dx
R3
= f V2OV2div(u; — uy)dx
R3
= f V2OV (=0,(p1 — p2) + div(paus — pruy)dx (2.24)
R3
=— f V2OV29,V>Ddx + f V3OV (piuy — pour)dx
R3 R3
1
= -9, f IV3®Pdx + f V3OV (0 u; — pour)dx.
2 R3 R3
For the term | , V3®OV3(p,u; — pruy)dx, we can easily check that
f V3(DV2(P1M1 — pauz)dx
3
. (2.25)

<(loilles + 1w llz=)AV DI, + V201117, + IV l17.) + IVpull=(IVOIZ, + [V ][7.)
+ (o2l + leeall=)AVPOIZ, + IV20all7, + V2uall72) + V02l (VP QI + 11Vatall7,)-

Now we estimate C;. We hereby declare that € occurring in the following inequalities is a sufficiently
small positive number to be determined. To begin, it is easy to check that

|C3] + |Cul = | - f V(u, - Vu)Vuydx| + | — f V(us - Vir) V> urdx|
R3 R3

3012 2 2 212

< €IVl + CONVurllz=IVurlly, + [IVurlle=1V-u [l
30012 2 2 212

+ €Vl + C(ONVualllVuall, + Vo]l =V u |l

(2.26)
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Using Holder’s inequality and Young’s inequality, we have

ICil :|f Vi (p1divuy + uy - Vp)V2pdx
R3

< f x V2011V [[V?01]dx + f %p1|v3u1||v2p1|dx+ f 3 Vo1 lIV2u, [|V?011dx
R R R

<IVull=lIVZ0ill7. + Vil + Clelloillz=IVo1ll7
+ IVoulle=(IVpull7, + IV [17,)-

Similarly, we also have

ICal <IVuall=[IV2pall7, + €llViuall7, + C(ellpall= V02l 7
+IVoall=(IV2pall7, + IV?usl[7,)-

(2.27)

(2.28)

Also, integrating by parts, using Holder’s inequality and Cauchy’s inequality, and by (2.5) and Lemma

2.1, we have

ICsl = If3 V(F\(p1)Vp1)V uidx|
R.

= | f VF Vo, Viudx + f Fi1V*0,V3u,dx|
R3 R3

< elVull7, + CONIVPullZ=lVpill. + C(ellodllz-IVZoull7..
Similarly to the estimate of Cs, we obtain that
ICel < ellVZiall, + C(OIIVPall-IIVpall7. + C(e)lloal 71V palI7.

For the rest estimates of C;, it is easy to check that

|C7|=|f V(H (o)1 Auy + uoVdiviy )V u dx|
R3

= | f VH() (1 Auy + o Vdivu)Viudx + f H(p)V (i1 Auy + (1o Vdivuy)V3udx|
R3 R3

3.2 2 12, |12
< €Vl + CENVo LIVl

and

ICsl < ellVZuall?, + C(OIIVpall7 IVl

(2.29)

(2.30)

(2.31)

(2.32)
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Combining (2.23)—(2.32), we have

1
0 f}(le/Oll2 + V2P + [Vpal + Vil + [V OP)dx + g f}(IV%I2 + Vi )dx
R- R’

+ 1 f (V2 divuy|* + |V2divus|*)d x
R3

< Cllpills + i llzs + lloallzs + luallzs + 1Vp1lls + IVall=) IV D7,

+ Cllorlls + il + lloallze + Vo1l + 11Vl V21 17

+ Cllolls + il + IV lls + IVl + IVl )NVl 17

+ C(lloallz= + luallzs + lloall7 + IVp2llzs + 1IVuall)IVZp2ll7

+ Cllpall + llieall= + IVpalls + Vil + IV all7)lIV2ua 17,

+ CIVil2=NIVpi 7 + 1IVpall7=NIVall72) + CUIVp1lls + Vi 7V |17
+ C(IVpall + Vil )NVl

By Gronwall’s inequality, we complete the proof of the lemma.

Lemma 2.5. Under the assumption (2.2) and (2.4), for 3 <1 < s+ 1, we have

I I I I I+1 I+1 I+1
(Vip1, Vi, Vipr,Viuy, V i q))||L°°(0,T;L2(R3)), (V™ ey, VT u2)”L2(O,T;L2(R3)) <C,

where C is a constant that depends only on ||(V'p1 9, V020, Viuy g, Vi g, VI D)) 2.

(2.33)

Proof. Similar to the proof of Lemma 2.4, we can obtain the conclusion of the lemma. So we omit

it.

3. Green’s function of the linearized system

O

In order to see the Green’s function of the linear part of the system better, we reformulate the system

(2.1) slightly. Let
n=py+p2,m=py—pP1,V=Up + U, W= Uy — U,

which equivalently gives

n—m n+m V—w vV+w

) s P2 = 5 ,M1:—2 s Uy = >

P1 =
Then, the Cauchy problem (2.1) can be reformulated into the following form:

on+divy = Q1(n,v,m,w),

0v — Ay — o Vdivy + Vi = Qr(n, v,m,w),

om + divw = Qz(n,v,m,w),

ow — i Aw — o Vdivw + Vi + 2V® = Qy(n, v, m,w),
AD = —m,

(n,v,m,w,VO)(x,0) = (ng, vo, mgp, wy, VOp)(x),

(3.1

(3.2)

(3.3)
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where (ng, vo, mo, wo, V®0)(X) = (01,0 + P20, U1,0 + U20, 020 — P10, U2,0 — U1 9, VPp)(x) and

01(m,v,m,w) = =div( S ) — div SR (34
0y =-5"-V(0F) -5 V()
P, (1+ my n—m Py(1+251) n+m
—(- e n— — DV - (G - DV(=*) (3.5)
=0 o (U ACTY) + upVdiv(57)) - Tz = (I A(SE) + i Vdiv()),
O5(n, v, m, w)_dw(” my—w )—dzv(”+mv+2w) (3.6)
V—w V—w_ Vv+w V4w
= .V - .V
01 = = V(=) — 5= - V(=)
Pi(1+55%) n—m Py(1 + ) n+m
= WG - G - V) 3.7)
l’l m n+m
V=W CvVtw
1+ = m(:ulA( )+,UszlV( > ) — 1+ o (ﬂlA( )+,UszW( 3 ))-
The linearized system of (3.3) is
omn +divw =0,
0v — i Av — o Vdivy + Vi = 0,
om + divw = 0, (3.8)
ow — i Aw — (1o Vdivw + Vm + 2V0 = 0,
AD = —
We can also rewrite (3.8) as
(0; + A(D))V =0, 3.9)
where
0 div 0 0 n
|V A -, Vdiv 0 0 v
AD) =1 0 0 div Sl P (3.10)
0 0 V+2V(-A)" —u A — i, Vdiv w

Consider the Green’s function G of (3.9), i.e., the solution to the following Cauchy problem

{(a, +A(D)G(x,1) = 0 (3.11)
G(x,0) = 6(x)Igxs,

where d(x) denotes the Dirac function and /g.g denotes the unit matrix. By direct calculation, we obtain
the Fourier transform of the Green’s function G as

g=|% 2] (3.12)
0 G
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where

— deel ettt N_1e = *+‘§T
Gl(f l)—[ [—/l+/l/}71t 2 y) A T)
K —et —_ /l+ +t—/l ! - 2 fé: ’
le/l+ A f —e H1lél f[+(e/l+T_e+ 1€l I)IE?

M 3/ P /l”fT ]

@2(‘? H= ( =1 1o At 1 T
’ el e el M —ulePryéE |”
g e I + ( /"1+_/“1_ +e )‘$|2

V=101 + ==

and

—HIEP £ VilEr — 41€P

2

1= —HIEP = ViRIER — 4P +2)
+*= = 2 ’

For the convenience of writing, we also give the following definition,

G=|9 0 , (3.13)
0 G,

A =

o=yt .

where G is the Fourier transform of the Green’s function G. In this paper, we divide Green’s function
into a high frequency part and a low frequency part since Green’s function has different properties in
high and low frequency. Let y (&) be a smooth cutoff function

0,1 > 1

We denote G = G, + Ggy + S, where G, stands for the lower frequency part, Ggy stands for the regular
part of the high frequency, and the S stands for the sigular part. G, Ggy, and S have the following
forms:

1L,1¢ < 4,
X&) = { <2 (3.14)

G =x(D)G, Gy =(1-x(D)G-S,

-y 000 0 000
O 000 0O 000
O 000 0O 000
1, O 000 0 000
S$=e0Wl 5 000 1-yD) 0 0 0| (3.15)
O 000 0O 00O
O 000 0O 000
O 000 0O 000

Here, 4 = puy + w,. For the convenience of the description in the fifth part of this paper, we redefine
smooth cutoff functions y;(£) and (&)

[rie<t,
xﬂ@—{am>%-
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1,1¢ < L,
x2(6) = 3 (3.16)
{o, € > 4
Let us redefine the low frequency of G and the high frequency of G,
Gz = x1(D)G, Gg = (1 - x2(D)G =: Gg; + Gy,
where
1—x2(D) 0 0 O 0 0 0O
0 0 0O 0 0 0O
0 00O 0 0 0O
__ 0 00O 0 0 0O
Gs =evoo) 000 L—yxD) 000 (3.17)
0 0 0O 0 0 0O
0 00O 0 0 0O
0 00O 0 0 0O

Here, u = u; + p,. From the definition of y (&), xy1(£), and y»(¢) in (3.14) and (3.16), we can obtain

X(D)Gz = x(D)G, (1 -x(D)Gg =1 -x(D))G.

In this paper, we use G™ to represent the element in row i and column j of G.
Below, we list some properties of Green’s function, and the readers can refer to [11,21,30,31] for
details.

Lemma 3.1. If €, > 0 is small enough, then for |£| < €, we have
A = =Elel = V=Tl + Z djlel),

and

A =L +Za]|§|2f+ V_<W+Zb|§|zf>

Proof. The readers can refer to [11,21, 30, 31] for details, so we omit the proof. O

Lemma 3.2. If1 < p < +ooand a = (ay, s, @3), ; > 0, x € R3, we have

ID*Gy (-, Dll < C(1+ 30795,

Proof. By the representation of G and Lemma 3.1, we can obtain the proof of the lemma, so we omit
it. m]

Lemma 3.3. If K > 0 is large enough, then for |£| > K, we have

(o)

- 1
+ 5 D el A= e = Y el

j=1 j=1

I T T LN e
dom = Y D=l 4= )

J=1 J=1

Ay =

tl'—‘
l\.)l"t
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Here, u = i + o, and all e}, [; are real constants.
Proof. See [11,21,30,31] for details, and we omit the proof. ]

Remark: This lemma states that in G, only the terms related to
A A ,
@ e, A e
(&) — A-(§) (&) = A-(§)
will occur in a singular part, and the other terms will bear at least a first derivative.

Lemma 34. If1 < p < +ocoand a = (a1, @z, @3), a; > 0, |a| < 1, we have
ID*Gru(, Dl < Ce™ ",

ID* G, Dy < Ce™,
IS, 1) % VDNl < CeIVE Dl
IG5( 1) * V(, Dl < Ce IV, Dl
where Cy > 0 is the fixed normal number associated with p.

Proof. The readers can refer to [11,21,30, 31] for details, so we omit the proof. m]

Below we derive an estimation method that combines the advantages of the Green’s function and
energy estimate. We consider the system:
a + B D U ,t = R U ’t 5
(0; + BID)U(x,1) = R(U(x, 1)) (3.18)
U(x,0) = Up(x),
where B(D) is an operator and R(U) is nonlinear terms. The Green’s function G(x, t) corresponding
to the system (3.18) is the fundamental solution of the Cauchy problem of the linear equations of its
corresponding system, i.e., G(x, t) is the solution of the following Cauchy problem:

(0, + BID)G(x,1) = 0,
G(x,0) = 6(x)Lysn-

where 6(x) denotes the Dirac function and /,,,, denotes the unit matrix.

The solution of (3.18) is usually discussed in terms of energy estimate or the Green’s function. The
following lemma combines the advantages of Green’s function and energy estimate, which we may call
the G-E estimate. The advantage of this estimate is that on the one hand, the fine decaying estimate of
the solution can be obtained with the Green’s function; on the other hand, the derivative in the singular
part of the high frequency can be shared through integration by parts similar to the energy estimate.

(3.19)

Lemma 3.5. [27] If B(¢) is a complex normal matrix (i.e., B'B = BB*, B* = ET), then it holds

NUCOIE, = | (G0 = U G, 1) x Updx

= (3.20)

+2 f f G (x—t-1)* U(C,1) Gx — -1 —7) % RUU(, 7))dxdr,
0 IR

where G is Green’s function about (3.19).
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Remark 3.1. If G' = G, then we have

IUC DI = 1GC 1) = Ul + 2f0 Gx =t -1+ U(, 1) - Gx =, 1 =7) * R(U(:, 71))dxdr. (3.21)
R

The Eq (3.20) is in the form of row vector times column vector, while the Eq (3.21) is in the form of the
inner product of vectors.

Remark 3.2. As can be seen from (3.10), G, which we defined in (3.13), satisfies GT = G.
4. The global existence of solutions
In this section, we first give the local existence theory.

4.1. The local existence of solutions
According to (2.1), we construct the approximate solution sequence (V1)) by the following
linearized iteration scheme:
T + divit™! + div(pl T ul) = 0,
AU — p Au™! — 1o Vdivitt + Vit — v+

n n P/(l+ ") n i n ; n
= —u| - Vu] —( ‘1+p?1 - 1)Vp! - ]i—’p?(ylAul + upVdivuy),
s + diviy™ + div(psTu) = 0, 4.1)

At —  Aut! — o Vdivutt + Vit + Vot
Py (1+p5) n_ n o
e DHVp) - ]+p;(ll1AM2 + uxVdivus),

A(I)"+1 = p}iﬁ—l _pg+l, hm|x|—>oo (I)n+1(x’ t) = 0’

=—uy - Vul —(

where {V"(1)} is defined as V"(r) = (0/(), u(2), p(1), uli(t), VO™ (£)),n > 0, and V°(r) = (0,0,0,0,0).
For any given integer s > [2] + 3, we define

Xy = (VOIVIlx < E)
as the suitable space for the solutions, where

VIlxs = sup [[V(®)l|.
0<t<T

It is easy to show that X7. .., equipped with the norm || - [|xs, is a nonempty Banach space. To obtain the
local soluiton, we need the following two lemmas. To do this end, we first give a prior assumption. For
sufficiently small £; > 0, we have

loillL=@®3) < €1 and ||pall~@3) < &1 4.2)

Lemma 4.1. Under the assumption (4.2), when T is small enough, there exists a constant E > 0 such
that {V"(x, 1)} € X3
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Proof. We imply the inductive method to accomplish the proof. To start, when n = 0, we have

dpy + divu; =0,

Ay — i Auy — o Vdivuy + Vpi — VO! =0,

A5 + divuy = 0, 4.3)
Aul — i Auy — i Vdivuy + Vp) + VO! =0,

AD' = p! = p! limyyy e ®'(x,1) = 0

By the energy estimate, we have
1 12 12 12 112 12
Eatq'p]”m + ety llzs + lloallzs + et llzs + IV |7, < 0.

We take E = 2||(||o1(x, 0), u1(x, 0), p2(x, 0), us(x, 0))||ns, then we get Vl(x, 1) € X},E. Now, assuming
that {Vj (x,0)} € XiE for all j < n, we need to prove it holds for j = n + 1.
Applying the energy method to (4.1), we have

_6tf (lpn+1 2 + |I/l +1|2 + |pn+1 2 + |I/l +1| )dx
+ 1y f (VU P+ Vs PYdx + o f (divi™' * + |divis™ P)dx
R3

f V(Dn+1(un+1 n+1)dx _ f le(pn+1 n)p111+1dx f dlv(/)n+1u2)pg+ldx
R3

—f u’{-Vu’f-u’{“dx—f uy - Vil - ub dx — fFl(p Wit Vplldx (4.4)
R3 R3 .
f Fy(ppus™ - Vphdx — f H(o)) (1 At} + woVdiv )} dx

H(p5) (w1 Ay + iy Vdiviy)uly dx
R3

9
=: Z G,’.
i=1

Similar to the proof of Lemma 2.2, we have the following estimates for each G;, 1 <i <09.

1
Gil < =50 fz IVOPdx + CIVO™ 2, (luflI7 + ld5l7) + ClloT 17 + 1107 I

12
1 1
G2 + G| < Clidivid|| =0} 117, + Clidiviy||llo5 17
1 1
G4 + Gs| < ClIV |7 luill7, + CIIVuslI Il + Cliut 117, + Cliu™ |17
2 1 1
Gs + Gl < CIVELIZ=I01117. + Clley™ 117, + CIVOSIIZ- o3I + Cllus ™ |17

12°

[2°

|Gs + Gol < ClIVR{ 7l 17, + C1 + 1o IE)IVUill7, + el Vi 17,
+ CIVRS Izl 17 + L+ 157DV, + eV 7.
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where we take € small enough such that e < 1. Plugging the estimates for G; — Gy into (4.4), and

integrating with respect to t, we obtain

sup (o} OIT + 1 DI, + o5 DI, + 5™ Ol + VO™ (DI7,)

0<t<T

! !
+ f f (VU + Vil Pydx + o f f (divi}* ' + |divu
0 JR3 0 JR3

1
< (EE)2 + CTE® sup |[VO"|7, + CT(1 + E) sup Io}*'II7,

0<t<T 0<t<T

+CT(1 + E) sup |04, + CT(1 + E?) sup ||,

0<t<T 0<t<T
+CT(1 + E®) sup |lu5™|I7, + CTE*(1 + E?).
0<t<T

Taking T small enough, we can get the following estimate from (4.5),

sup [V (0l < E.

0<t<T

To derive higher-order estimates, similar to the proof of Lemmas 2.3-2.5, we can obtain

sup [|D*V™H (D)2 <E, 1<a<s+]1.
0<t<T

Combining (4.6) and (4.7) yields
sup [V ()|l < E,

0<t<T

which means V"*'(x, ) € X;"!. We complete the proof of the lemma.

4.5)

(4.6)

4.7)

Lemma 4.2. Under the assumption (4.2), when T is small enough, {V”(x, 1)} is a Cauchy sequence in

s
Xr g

Proof. We set

n+l _ _n+l n n+l _  n+l n n+l _ _ n+l n
1 =P1 P )2 =Py TP 8 T U —Up

n+1 n+1 n n+1 n+1 n
g =uy —up, P =0 - O,

and define

n+l __ n+1 n+1 n+1 n+1 n+1
Y _( 1 °J2 7g1 7g2 a\II )’

then we only need to verify that

1
1Y s < allY"llgze,
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where 0 < k < 1. From (4.1), we get Y"*! satisfies

O S + divg™ + div(p"™ ' — plu™) = 0
6Ign+1 - Agn+1 _“ZVdenH + an+1 V\Pnﬂ

n— a n P (1+p17h .
= _(”1 : Vl/ll — I/tl . Vul ]) (( I1+;p1 _ 1)V 1 ++:(1 : 1)Vpl 1
_(fi_;(“lAulll + o Vdivuy) — /1)r1:—1 (,UlAM’f_1 + o Vdivu ™)),
Sy + divgs*! + div(ps uy — piudy™") = 4.8)
5,g”“ — iy Agn+1 _“ZVdenH + an+1 + V\PnH

_ | Py(1+ph) Py(1+p37") -
= —(uy - Vuly — uy” -Vug ) —(( 1+p§2 - DVp) —( 1+pg-21 - Vo)

A n—1
_(lf__ng(,ulAug + ,qudlvug) - per (’u]Aug—l + ﬂsziVMg_l)),
A\Pn+1 = n+1 f2n+1 hm|x|—>oo \P’H'l(_x [) =

Applying the energy method to (4.8), we have
latf (|f1n+1|2 + |g1+1|2 + |f2n+1|2 + |g2+1| )dx
+ 1 f (V' + Vg5 Pdx + s f (\divg{*'I* + |divgs*'P)dx
— f \Pn+1(gn+l n+1)dx f div(prlz+l prlz 111 l)fln+1dx
R3 R3
- fﬂ@ div(eit'ul — phuly ) it dx - f -Vl —u VU - g dx
Rs(ug Vil — st Vs - bt dx - f (F1(p}) - Vo = Fi (ot - Vi gl dx (4.9)

—~ fR 3(H(p'f)(/11Au'f + woVdivi?) — HE (i Adl™" + i Vdivi ™)) gh dx
-~ fR (HE) @A + poVelivisy) = H( (i Au™ + o Vdivid™")) g dx

- f (Fp) - Vol = Fap ™) Vi gyl
R

el

Ji.
i=1

Similar to the proof of Lemma 2.2, we have the following estimates for each J;, 1 <i <09.
For J;, we have

1
Ty = =50l + f VNS + pigh = AT — pligdx

1
< —EﬁtIIV‘P’”lllzz + AV, + s lizNLA I

2 1 1
+ Mz AT + oSl N lE + lloliz-llgt* 117
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For J,, we have

5= [ i+ plgh
R3

12 112 2
< VU= 1 + 1YL= 7. + ety
n+1

2 2
+1IVETl + oYl 172

Similar to the proof of J;, for J3, we can obtain

Jy = f div(fy 'y + phe A dx
R3

12 112 2
< IV lle=15 M + IVSl= IS I + lIgall

2 12
+ IVl + Io5l=Ilf "l
For J,, we have
Jy=- fS(g’f - Vul + - Vghgl dx
R
2 2 —112 1,2
lgilly> + AIVUillze + IVi ™ lIz)lleT 112

112 2 1,112
+ €llVgi™ I, + Cligillpalluy ™ Ilze

IA

Similar to the estimate of J,4, for J5, we can obtain

hz—f@yW%%*vwgwx
R3

2 2 -1y2 112
lg3llz> + (VeI + IVuy ™ [lz)llgs ™ Il

112 2 1, n-1)12
+ €llVgy Il + Cligallalluy ™ 7

IA

For Jg, we have

&
I

_ f (FA(0) = Fy(0™ )Vl + Fr(pl WV gl dx
R3

2 112 2 -12
IVOLllz-llgi™ 117> + 2lloill + 2lloy 11

2 -1y2 112 12 -1y2 2
+ A + 1IVey 18T 1 + ellVET 1l + Clloy I

Similar to the estimate of Jg, for Jy, we can obtain

IA

== [ (Faph) = ol W+ Pt OV £
R;
< VPRI 5™ 12 + 20 + 205”1

n+1

2 -112 2 112 -112 2
+IA L +11Ves =185 11 + ellVEs™ 1l + Cllos 1A -

For J;, we have

J7

- f (H(O}) = H}™ )i A} + o Vdividl) + H(py ™ (i Agh + o Vdivg))g)™!
R3

2 =12 12 2 12
CUIVPillze + IVET N 112 + ClIVUiIlL, + €l VeIl

2 -12 2 2 -12 112
+ CP! Il + oy IEDIVIlL, + ClIVEIIL + CIVET lz-llgi™ Il

IA

dx
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Similar to the estimate of J5, for Jg, we have

Jy =~ f (H(©3) = Hy ) (Al + o Vdividy) + H(ph™ ) Agh + o Vdivgy)gh dx
R3

2 =12 12 2 12
< CUIVESIILs + V5 HIz)lgs ™ Il + ClVusll + ell Vs Il
2 -12 2 2 -12 112
+ C5lIE + M0 NIVl + ClIVEIIL + ClIVES llz-llgs ™ Il

Plugging the estimates for J;—Jy into (4.9), and integrating with respect to t over [0,T], we obtain
n+1 2 1 n 2
sup |IY™ (I}, < 5 sup YOIl (4.10)
0<t<T 0<t<T

where T is small enough. To derive higher-order estimates, similar to the proof of Lemma (2.3)-(2.5),
we can obtain

1
sup [|D*Y" (B2 < 3 sup [|[DY"(D)|%,, 1<a<s. 4.11)

12°
0<t<T 0<t<T

Combining (4.10) and (4.11) yields
1
sup 1Y @)llgs < = sup 1Y )llae,
0<t<T 0<t<T

so we complete the proof of the lemma. O

So far, we complete the proof of local existence.

Lemma 4.3. Let (019 — 1,u10,p20 — 1, U209, V®o) € H**'(s > 4), and

lGo10 — 1, u1 0,020 = 1, u20, VOl 2r3) N L1 r3) < Eo,

where E is sufficiently small, then there exists a time T > 0, such that the Cauchy problem (1.1) and
(1.2) admits a unique classical solution in [0,T) that satisfies

(o1 = Ly, p2 = Lup) € L¥([0, T); H**Y), V(uy, up) € L*([0, T); H*).

4.2. The global existence of solutions

In this subsection, we will establish the global solution to the systems (1.1) and (1.2) by using the
bootstrap argument if the initial data satisfies

1(01,05 02,05 11,0, U2,0, VP12 A 1t £ Ed, 4.12)

where Ej is sufficiently small. However, for the derivatives of p1 ¢, 020, 1.0, 420, and V@, we only
assume that they are bounded. Now, we first give the following abstract bootstrap argument.

Lemma 4.4. [32] Let T > 0. Assume that two statements C(t) and H(t) with t € [0, T] satisfy the
following conditions:

1) If H(t) holds for some t € [0, T, then C(t) holds for the same t;

2) If C(t) holds for some ty € [0, T], then H(t) holds for t in a neighborhood of ty;

3) If C(t) holds for t,, € [0, T] and t,, — t, then C(t) holds;

4) C(t) holds for at least one t, € [0, T].

Then, C(t) holds on [0, T].
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For any fixed 0 < T < oo, t € [0, T'], through the regularity criterion in the Section 2, we know that
if (o1, 02, uy, us, VO)(x, t) satisfies

(Vo155 V1 (Dl (23, IV 2Dl @) Vit (D)l o)) < C(1 4+ )72,

and
llo1(Dllze@sy < &1 and [lp2(Dll=@3) < &1,

where £, > 0 is small enough, then

lGo1, w1, P2, tr, VOl oo, 71:05+1) + I(Vutr, Vi)l 2o, 1m0y < C,

where s > 4. From (3.1) and (3.2), we get

1Go1,05 11,05 02,0, U2,0, VP22 11 < E,

is equal to
I(n0, vo, mo, wo, VO)|r2 11 < Eo, (4.13)
and
IV 1Ol Lo @3y, VU (Dl Lo ®3ys Vo2 (DIl o3y VU2 (Dl o m3)) < C(1 + 172,
is equal to
IVAR@)l| Lo @3y, IVVOll Lo w3y V(D) oo 3y, (VWO Lo r3)) < C(1 + n72, (4.14)
as well as
loillL=@®3) < €1 and ||pall~@3) < &1,
is equal to

||n||L°°(R3) < & and ||m||Loo(R3) <é&p,

For convenience, in this subsection, we use the condition (4.13) and the assumption (4.14). Letd be a

fixed positive number, say,

0
2Vollinzz +2lVVolls < 5

where Vj is defined as Vy = (ng, vo, mg, wy, V®)? . For any fixed 0 < T < oo, € [0, T], let us denote

o -
CT) = VOl VYOl @), VMmOl @, VWOl @) < 51 +1) ?

and
H(T) : (IIVa@)ll @3y, IVVOll Lo @3y, V()| oo g3y, VWOl ®3)) < 0(1 + 172, 4.15)

Based on the local existence of solutions, we only need to verify the condition 1 in Lemma (4.4) under
the condition (4.12), i.e., given H(T) as the condition, to derive C(T) is valid. Before we check the
condition 1, we need some lemmas.

Lemma 4.5. Under the assumption (4.15) and the condition (4.13), the following estimate holds:

(2, v, m, w, VO)|| =0, 7:12m3)) < CEp, T € (0, +00). (4.16)
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Proof. By (4.15) and Lemma 2.2, we complete the proof of the lemma.

Lemma 4.6. Under the assumption (4.15) and the condition (4.13), we have
2
(N, v, m, YDl < CE(1+1)75,

1 :
IV G, v, m, w)(Oll 25y < CEZ (14173,
IV, m)Dlls@sy < C(L+ 1%, t€[0,T].

Proof. By the Gagliardo-Nirenberg inequality, we know

(72, v, m, w)(Ol| L r3)

2 3
S C”(n’ v, n, W)(t)”Zz”V(n’ v, m, W)(t)llls,""(Ra)

< CE§(1 + t)_%,
IVv@)ll2 < CIA V@)@,
and
||A1+€V(t)||Loo < Cllvv(t)lz;ﬁl|A1+kEV(t)||ﬁoo,

_ 2 _ 1
where 6 = ==, 8 = ;. Then, from (4.17) and (4.18), we have

2

-5+ (I-Das
IVvOllrz < CllvOl > Vvl 7

1-52< —(1=1y 4
<CE, ™31+ "0%s,

Taking k = é, €= é in the above inequality, we obtain

Vvl < CES (1 4+
The same computation also gives
VGt w)(Oll 2y < CES(L+ 177,
By the interpolation inequality, it holds

IV, w)B)ll+ < CIVE, WLV, w)ll; .
< C(1+ 1) @i
=C(1+1)5.
Thus we complete the proof of the lemma.

Lemma 4.7. Under the condition (4.13), we have

|(n(2), m())||1 3y < CEy.

(4.17)

(4.18)
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Proof. By (3.3); and (3.3)3, and using the condition (4.13), we can obtain the result. O

Now let us use Green’s function to prove some lemmas. To begin, by Duhamel’s principle, we know

t
V(t):G(t)*V0+fG(t—s)*N(V)(s)ds, (4.19)
0
where
n no % O
_|V _| VYo _. V§ 1O
V= m , Vo= my| = Vg , N(V) =: ol (4.20)
w WwWo Vg Q4

where the Q;(i = 1,2, 3,4) are defined by (3.4)—(3.7). From (4.19), for the component v and w of V,
we have

Yot GH(0) % Vi + [ S, G4t = 5) + Q4(s))ds
v =i, GH@) = VE+ [ X, G - 5) = 0X(s)dss
Tiee GH @)+ VE+ [ Xl G — 5) = QX(9))ds

M,
=M,
M;

Shos GO0 # VE+ [ 85 GOt — 5) % QX(9))ds
w=| 28GR 0) x VE+ [ 38 GTH( - )« O4(s))ds
Nhos M) # VE+ [ N85 GM (- 5) + QX(9))ds
N,
N>
N3

(4.21)

(4.22)

]

where G(t) = Vy, G(t — s) * N(V)(s) obey matrix multiplication.

Lemma 4.8. Under the assumption (4.15) and the condition (4.13), it holds that
2
(@), w)llp ey < CE;, t€[0,T].

Proof. Because we can’t directly get the estimate of ||(v(¢), w())||.1, we first obtain the boundedness of

[[(v(2), w(?))||. for some r € (1,2). In the following, we take r = %.
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We first consider ||(v, w)(?)||-. By (4.21) and the representation (3.15) of S, we have

1M |-

<Z||G“(r)> # Vil + f ZHG“(t 5) # Q(s)llirds

Okl

||G“(r)> Vk||Lf+Z||GZ () * Vgl
=1

4.23)
: 4
f Z IG74(t = 5) * @ (s)llrds + f Z IG3H( — )« Q"()luds
k=1 0 %=1
4
=: Z P,‘.
i=1
For the estimate of the linear part, it is easy to check that
P, < ClIVollpt € CEy, Py < Ce ||Vl < CE,. (4.24)
For the estimate of the nonlinear part, utilizing the definitions (3.4)—(3.7) of Q;, we have
f Z IG74(t = )« Q ()l ds
0 %=1
< f (1 + 1= 2D (fln(s)llp + ()l AVl + w(S)lz=)ds
0
!
= f (1 + 1= 9722wz + WSV + IVw)ll2)ds
0
!
+ f (1+ 1= 92 (n()le + Il AT(lz + [IVm(s)ll)ds (4.25)
. .

!
+ f (1 +1= 9 TVl + VW) + lm(s)ll=)ds
0
! !
SCEof(l+z—s)—§(1+s)—?ds+CE0f(1+r-s)-é(1+s)—ids
0 0

2 f
+Cng(1+r—s)-§(1+s)—?ds
0
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Py < fo Zn 24 (1 5) QI ds
<c fo &SIl + (Al + (sl
| O sl + I ITVNe + V()
v Ol + I IVA(N: + V()2
&SI T2 + IVl + ()2

+C

<C

Ohujm\l h‘

g t
f e0I(1 + 5)ds + CE,y f e OI(1 + )i ds
0 0
t
+CE0fe_C°(t_s)ds
0
2
< CE;.

Combining (4.24)—(4.26), we obtain

The same procedure gives

3
2
2 Ml s + Nl 4) < CE;.

So far, we can obtain

10wl & < CE .

Now, we can obtain the estimate of ||(v, w)|[;: by using [|(v, w)||L%. For M,

4 4
1Myl < Z IG7* (1)) * Vil + Z IGZH(®) * Vil

=1

¢ 4
f DG - 5+ N(s)llpds + f Z||G§ﬁ,(z—s)*Nk(s))||L.ds
\ k=1 =1
ZF.

A simple check gives us that
Fy < ClVollpr < CEy,

Fy < Ce |Vl < CE,.
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Then, by using Lemma 4.6 and Young’s inequality for convolution, we have

r 4
Fos [ 6309 ¢ 6)luds
k=1

< fo (1+ 1= 9 3003 (o)l + ()l + [w(s)ll=)ds
" fo (14 1= 20Dl s+ Il ATV + V(s )ds

NPT | NIV “+ IV <)d
" fo (1+ 1= ) D)l + ()l AUVRCS) e + IVm(s)|z=)ds )
M fo (1 +1 = DAVl + VW) + llm(s)llz~)ds

1 2 ! !
SCEof(l+t—s)—5(1+s)—?ds+CEgf(1+s)—‘$ds+CEof(1+s)—2ds
0 0 0

) ¢
+Cng(1+s)—?ds
0

Sy

<CE

9

and
Fy< fo t ki] Gy (r = 5) * Q(s)lIids
<C fo O (s + Il + ()
+C fo O sl + IIT: + V()
+C fo O (il + I ITA(: + IV ()l 2)ds 4.28)

+C | eIz + VW)U + lm()ll2)ds

Otg.\\n h

! t
<C f eI + s)_gds + CEof e~ 0= (1 4 s)_%ds
0 0

t
+ CE, f e =94y
0
%
< CE;.
Combining the estimate of each F;, we obtain
2
1Ml < CE; .
The same procedure gives

3
2
D UMl + 1INl < CE;.

i=1
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So far, we can obtain

(@) W)l < CE;

and we complete the proof of the lemma.

Lemma 4.9. Under the assumption (4.15) and the condition (4.13), we have

V2Vl < CES(L+ 175, 1€ [0,T].

Proof. Applying Duhamel’s principle, we have

Then,

D*V(t) = D*(G(t) = V) + f D?*(G(t — 5) * N(V)(5))ds.
0

ID*V (D)l 3y < ID*(G(@) * Vollses) + fo ID*(G( = ) N(VY())ll (e ds.

Now we estimate the righthand side of the inequality. Simple computation yields

and

Electronic Research Archive

ID*(G(r) = Volllzer3)
< ID*(Gy(2) VolllLe @3y + ID*(Gru(t) * Volll o3y + ID*(S (1) * Volll Lo ®3)
_s _
< ClVollprwsy(1 + )72 + ClIDGgryll 223 1D Voll 2r3) + C||D2V0||L°°(R3)e Cot

1 7
8

1 1 7
DVl s, €™ + ClIVollS s ID* Vol

8 e—C ol
12 (R3 L2 (R3 12 (R3)

_s 1
< ClVollp@sy(1 +1)72 + C||V0||Zz(R3

L _6
< CUVollies) + Vol g )1+ D75

1
<CE(1+1)73,

fo IDA(GE — 5) % NOV)($) e

< L ID*(GL(t — s) * NV)D|wsyds + f(; ID*(Gru(t — s) * NV)(DN o ryd's

i f ID*(S (t = 5) * N(V)(8))ll = z3)ds
0

=: 231 O,.

i=1

(4.29)

(4.30)
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Now we turn to estimate each O;. By the definition (4.20) of N(V), we easily check that

0, < fo ID*GL(t — $)ll2(In()llzz + Im()llz + V()2 + [Iw(s)ll2)
(IVV()llze + VWSl + IVR(S)l|ze + IVm(s)||z)d s

+ fo ID*GL(t = )l (IVll.z + WAV + IVW)ll=)dl s
+ L ID*G(t = $)ll2(ln(s)llz2 + m(INVA$)||s + 1IVm(s)ll=)ds

!
+ f ID*G(t = $)ll2(IV2v($)llz + VW)Ul + [lm(s)llz=)ds.
0
Using Sobolev’s inequality, we obtain

1(n(s), m(s)llz= < CES(1 + 5)°%,

then for O;, we have
0, <CE0f(1+t—s) 11+ 5)%ds

+CE5f(1+t Y371+ 5)"%ds
< CEO(I +1)°8

For O,, we can get

0, < j; IVGra(t = Izl 2 + VW)Ul + llms)lz)

+ ([IVV()ll2 + IVWIl2)(IVR(S)| o + [[Vm(s)]|z-)
+ (IV2n()llz2 + IV 2) AVl e + [Iw(s)ll=)]ds

+ fol IVGru(t = Sl [(Vv(Dllz + VW) (VY + [[VW(s)ll=)
+ (IV2($)llzz + V2wVl + Iw(s)llz=)d s

+ fot IVGru(t = Ol 2[(IVa(s)ll2 + IVl ) (VR + [[Vm(s)ll=)
+ (V2 (2 + IV m(s)l|2) (Il + llm(s)llz=)1d s

+ fot IVGra(t = LAV V(S + IV w(s)|2) VAl + [[Vm(s)]])
+ (V)2 + IV W)l + llm(s)lls)1ds.

Also by Sobolev’s inequality, it holds

I(V2(s), V2w())ll2 < CII(V(S),W(S))II JT(s), V()

L’

(4.31)

(4.32)

(4.33)
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then we have
2 (! (!
0, < CE,; f e"CI(1 4 5)"3ds + CE} f eI + 5)ds
0 0

1 !
+CE, f eI 4 5)2ds (4.34)
0
< CE;(1+0°%.

For O3, we have

03 < Cf e I(lIn(s)ll + MmOl + IV w(s)l| )
0

+ (VA= + V()= V2Vl + VW)l (4.35)
+ (V2 (= + IV )]Vl + VW)l
+ IV n(s)ll + IVl =) AVl = + IW()llz)]dls.

Sobolev’s inequality gives

1(V2n(s), V2v(s), Vm(s), V2w(s))ll

1 7 (4.36)
< Cll(n(s), v(s), m(s), w())IIEI(V*n(s), VHv(s), Vim(s), Viw(s))IIE,.
then we have
! 1 !
0s < CE; f eI + 5y Sds + CE} f eI + 5)2ds
0 0 4.37)
< CEX(1 + 1) 3ds.
Combining (4.32), (4.34), and (4.37), we obtain
!
[ IR = 5 Nl
0 (4.38)
1
< CES(1+1)75.
Using (4.30) and (4.38), we complete the proof of the lemma. O

With the above lemmas at hand, we now check the condition 1 of Lemma 4.4, that is, the following
lemma.

Lemma 4.10. Under the assumption (4.15) and the condition (4.13), we have

0 _
VRO Lo @3), IVVOll o3y VO] ooy VWOl o 3)) < 5(1 +0)7

Proof. Duhamel’s principle gives rise to
f
VV(t) = V(G = Vy)(t) + f V(G(t — s) * N(V)(5))ds.
0
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Then

IVVOlloesy < V(G # Vo)Olles) + fo IV(G(z = ) * N(V)($)llLowsyd's.

Similar to the proof of Lemma 4.9, it holds for the first term on the righthand side of the inequality that

0
IV(G * Vo)l @3y < 4_1(1 +1)72 (4.39)

For for the second term on the right side of the inequality, it is easy to get that

f IV(G(t — 5) % N(V)()ll1@ds
0
< j; IV(G(t = 5) * N(V)()l|Lo@syds + I) IV(Gru(t — 5) * N(V)($)|or3yds

+f(; IV(S (2 = 5) % N(VY()l L rayds.

For the nonlinear part of lower frequency, Lemma 4.5 gives

fo V@ = 5) % NOVY ()l quords
= fo 2 V(G (2 — 5) * N(V)' (5))llrydds + f V(G (2 — 5) * N(V) ()]l zyds

%
< f ID*G M (2 = )l o 102(5), M| @) l(V(8), W) eyds
0

+ f VG (2 = $)l1@3) LAIG(S), Mm@ I(VV(), T oy
2 (4.40)
+ [I(v(s), W(S))||L°°(R3)||(V”(S), Vm(s))llL”(R3))]ds
< CE, fz(l +t—95)2(1 +5) Sds
0
+CE} f(l +1— )7 2(1 +5)32ds
<CE (1 +073 +(1+nh)

< CEi(1+1)72
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For the terms of [ [V(G}™**(t - 5) x N(V)?34)(8))|~@2)ds, Lemma 4.5 gives
!
fo V(G291 = 5) % N(V)234 ()| oo esyds
% k,{2,3,4}
< ||VGL (t - S)||L°°(R3)||(V(S), W(S))||L1(R3)||(VV(S), VW(S))||L°°(R3)dS
0
4
+ f VG2t = )l @) 100(8), WDl o @) V() VW) o esyds
2
é k,{2,3,4}
+ ||VGL (t - S)||L°°(R3)||(n(5), m(S))”L‘(R3)II(Vn(S)’ Vm(s))IIL"O(R3)dS
0
!
+ f VG224t = $)l111 @) 1(0(5), M| oy [I(VR(), V()| o es)ds
2
% k,{2,3,4} 2 2
+ f VG333t = 9l 102(5), m())| 1@y I(V2V(8), VEW()) |3y
0
!
+ f VG224t = 9)ll 23 1(VA(s), V()| @ |(Vv(s), Vw(s)l2sds
2

!
+ f V2G> — )12 [1(105), m(D |2 1TV (), V()| g3y ds.
2
By Lemmas 3.2 and 4.5-4.9, we have

t
f V@ = 5) % NOVYP3 ()] ongus s
0
3
< CE, f (L+1—5)7(1+5)°ds
0

2 t
+ CE; f(l +1—8) (1492 3ds
%

%
+CE0f (1+1—5)2(1+s)%ds
0

(4.41)
9 2
+ CE} f (1 +1—5)2(1 +5)3ds
0
2 ! |
+ CE, f(l +1—8) i1+ 92 3ds
it 3
+CE0f(1 +1—5) (1 + 5)2ds
. 2
<CE;(1+1)7.
The same procedure gives
!
f IV(GE>(2 = 5) % N(VY ()l
0 (4.42)

2
<CE;(1+1)7,
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and

s
f V@9~ 5) s NOVYOTH () mqunds
0 2
<CE;(1+n7

Combining (4.40), (4.41), (4.42), and (4.43), we have

f IVGi(t — 5) % NOVY()lpoeo s
0
< CES(1+1)

For the nonlinear part of high frequency, Lemma 4.5 gives

!
f V@IS = 5) 5 NS (5l ds
0

f IVGE2 (= 9|2 [, m(s))] 2 [(Tv(s), VW)l es)
0
+ (1(VR(s), V()@ lv(s), ws)l 2 e 1d's
< CE, f eI (1 + 5)72ds
0

< CEy(1 +1)72,

and
!
f V(G078 — 5) 5 N(V)234ET8 ()| poinydls
0
!
< f VG2 40T8 (1 — )]l 2 [N (8), WD 2@ I(VV(s), VW)l ey
0
+ (I(n(s), m(sDl 2@ I(Vn(s), V()| o) 1ds
f IVGlegr > *"8( = )l @) (1), M= @)I(VV(s), VW)l sydls
1 !
< CE, f 91 4 ) 2ds + CEP f eO0I(1 + 5)"F8ds
0 0
< CE®(1+1)
(4.45) and (4.46) gives

fo IV(Grer(t = ) * NOVY(Dllods

21
<CE’(1+1)7
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For the nonlinear part estimate for the singular part, by Lemmas 4.6 and 4.9, we have
t
f IV(S (2 = 5) % NOVY()lrayds
0

<C f "IN (s), M)l I(V20(5), V2w(s)) o)
0

+ [(Vn(s), Vm(s)|| @) [[(VV(s), VW)l Lo r3) (4.48)
+I(V2n(s), V2m(s)lLo@ l(v(8), W)l Loz 1d s

a (M (!
< CEP f e~ C=9(1 4 5)7373ds + CE] f e =91 4 5)2ds
0 0

< CES(1+1)2.

Combining (4.43), (4.47), and (4.48), we obtain

f IV(G(t = 5) * N(V)()|p=@»ds
: (4.49)

< CES(1+1)
By (4.39) and (4.49), we complete the proof of the lemma. O

Under the condition (4.13), the bootstrap argument and the local existence of the solutions for the
syestem (1.1) and (1.2) gives the following result.

PI‘OpOSitiOD 4.1. Let (pl,() - 1, U1,0,020 — 1, Uz o, V(I)o) S HSH(S > 4), and
oo — 1,110,020 — 1, 20, V@)l 23y 11 w3) < Eos

where E is sufficiently small, then the Cauchy problem (1.1) and (1.2) has a global solution in time
that satisfies

(o1 = 1, u1,p2 = Luz) € L¥([0, 00); H*), Vi(uy, up) € LX([0, 00); H**),

and
(I(Vpr1, Vur, Voo, Vi) Ollp=@sy < CES(1+ )72, £ € (0, +00). (4.50)

5. The decay rate of solutions
In this section, we would like to get the decay rate of solutions. The main result is stated as follows.
Proposition 5.1. Let (pl,() -1, Ui 0,020 — 1, Uz, V(Do) € HS+I(S > 4), and

oo — 1,110,020 — 1, 20, V@)l 23y 0 11 w3y < Eos

where E is sufficiently small, (01, uy, 02, u) is the solutions for the Cauchy problem (1.1) and (1.2),
then when2 < p < +oo and a = (ay, @z, @3), @; > 0, |a| < s — 1, it holds
1D (1 = 1,11,z = 1), D)l < C(L+ 0707975,
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Proof. From (3.1) and (3.2), the decay rate of (o; — 1,u;, 02 — 1, uy) is equivalent to the decay rate of
(n,v,m,w). Therefore, we only need to consider the attenuation estimate of (n, v, m,w). Note that if
the L? decay rate of the higher-order spatial derivatives of the solution are obtained, then the general
L9 decay rate of the solution follows by the Sobolev interpolation. For instance, using the Sobolev
embedding theorem, we have

1 3
IDV (@)l < ID*VOLID V@I,

where V(t) is defined as (3.10). So we only consider the decay of ||[D*V(¢)||;2. Below we will prove the
following assertion by induction,

DV, Dl <CA 4+ %, 0<la<s+1. (5.1)
When |a| = 0, we have

IVl
!
< IG(@) * Vollr2 + f IG(2 = 5) * N(V)(9)ll2ds.
0
<NGLOll2lVollr + IGre N2 Voller + 1S+ Vollz2

+ fo IGL(t = 5) * N(V)())l2ds + fo IGrr(r = 5) * N(V)())l2ds

+V£ 1S (£ = 5) * N(V)($)llr2ds.

For the terms fo’ IG.(t — ) * N(V)(s))|l2ds and fo’ IGru(t — 5) * N(V)(5))|l;2ds, we have

j; IGL(t = 5) * NOV)()le2 + IGru(z = 5) % N(V)($)llr2d's

< fO(IIGL(t = Iz + [IGr(z = ) I, m)(HI L 1(VY, VW)($)]|
+ [V, W IV, Vm)(s)l|~1d s

+ fO(IIGL(t = Iz + [IGru(z = )N, )1 |V, Vin)(s)ll=d's
+ fO(IIGL(t = ez + IGru(t = IV, WYL I(VY, VW)(s)l|=ds
+ fO(IIVGL(Z = S)lz2 + IVGra(t = M), m)I| L IV, YW)($)ll~d s

+ fO(IIGL(t = ez + IGru(t = )NV, V)| 2lI(Vy, Vw)(s)ll2ds.
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Then, from Proposition (4.1), using Sobolev’s inequality, we obtain
t
| 160t = sy N2
0
1 t
< Cf(l +1—8) (1 +9)2ds + Cf(l +1—8) 173 (1 + ) 2ds
0 0

!
+cf(1 +1- 9751+ s) i ids
0
<C( +1)73,
and

[) [|Gru(t — 5) * N(V)(s))|l;2ds

! t

< Cf e—Co(t—s)(l +S)_2dS+Cf e—Co(t—s)(l +S)_%_%ds
0 0

<C+n7i,

For the term fol IS (t = s) * N(V)(s)||;2ds, from Proposition (4.1), we have

j; [|S(t—8) = N(V)(s)||2ds
=¢ fo &I, MY, VW)l + 10, WY 2lI(Tr, Tz )dls

!
<C f e =91 4+ §)2ds
0
<C( +1)3.

We assume that (5.1) holds when |a| = k — 1, and later we shall prove that (5.1) holds when |a| = k.
To get the estimate of ||D¥V/(¢)||;2, we perform high and low frequency decomposition of the solution
itself. The low frequency part of the solution V is

Vi =xD)V,
and the high frequency part of the solution V is
Vi =1 -xD)V,

where y(D) is a pseudo-differential operator with symbol y(£), we can see (3.14) for the definition of
x(&). Then, we can decompose D*V/(f) as follows:

DV (1), = DG * (Vo)) + f DXG(t = 5) * (N(V)(5)))ds, (5.2)
0

D*V(Hy = DG = (Vo)y) + f DX(G(t - 5) = (N(V)(s))ds, (5.3)
0
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where G, G, and N(V) are defined in (3.12), (3.13), and (4.20), respectively. We define ]/\-7(\‘7/) as follows:

O

e . ’Q_Q:

Noo_.Q3. (5.4)
o

Here, @; = (03 +2VAa"'m, and Qy, 0,, 03, and Q, are defined in (3.4)—(3.7). For D*V (), we have
D'V(t) = D'V(t), + D*V(1)y.

Then, (5.2) and (5.3) are equal to

D*V(#), = DNGg * (Vo)1) + f DN(G7(t = 5) * (N(V)(s))L)ds, (5.5)
0

D'V = DXG g * (Vo)) + f DNG5(t — 5) * (N(V)(s))r)ds, (5.6)
0

Now let us estimate (5.5) and (5.6) separately. For the low frequency part, we have

IDV(@)Lllz < IDGE * (Vo)o)l2 + f i IDXG(r = s) % (N(VY($)))ll2ds
0

+ ] IDX(G(t = 5) * (N(VY()))ll2ds
23
=: H;.

i=1

For H,, we have
3k
H < CID'Gll2 Vo))l < C(L+ 17573,

For H,, we first estimate ||(N(V))zl|.1,

IINOV)) il < Cli(n, v, m, w)(Oll |(Va, Vv, Vi, Vw) (@)1
+ |2, )@ 1 |V, VW) (@)=
<CA+0)2+C(+1)2.

Then, for H,, we have
3
H, < Cf IDXGH)(t = NNV ()Ll ds
0

< sz(l =) 32 (1 +8) 2+ (1 + 5) 2)ds
0

<C+0)7ie,
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For H;, we have

Hy<C f t IDG(t = 1D (NV)($))L)ll2ds
<C f t IDG(t = $)Il 102, v, m, WOl 1D (2, v, m, w)(O) 2ds
+C f t IDG(t = IV, WOl |ID (1, v, m, w)(@)l|2dl s
+C f t IDG(t — V2@, WOl |ID (1, v, m, w)(@)|2dl s

!
< Cf(l +1= )21+ )21+ 5) i ds

2

t
: Cf (l+t=5)72(1+ 5971+ 7 ds
%

t
i Cf (L+1= 9721+ 97 (L + 97 7 ds
%

<C(1+n7i,

where we use the Gagliardo-Nirenberg inequality to obtain the estimate for ||(n, v, m, w)(?)||.~ and
IV2(v, w)(?)||z~. Combining the estimate of H,, H,, and H;, we obtain the low frequency part esti-
mate of DV (1)

IDFV ()]l < C(1 + £)7373,

For the high frequency part of D*V(¢), by Lemma 3.5, we have

1DV, 0)ull?
= IDXGC, D) * (Vo7

t (5.7)
+2 f Gx— -1t —1) % D"(V(, )y - G(x — -, t — ) * D*(N(V(, s))) ydxds.
0 JR3

By the definition of y,(¢) in (3.16), we know (5.7) is equal to

IDAV (-, )l
= IDXG (. 1) * (Vo7

+2 f f G(x—-t—1)* D"(V(-, )y - Gg(x — -t = 5) * DN(N(V( s))) ydxds (5.8)
; 0 R

= Z I,'.
i=1
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Now we turn to estimate each I;. To start, for I,

I, = |ID"Gg(-, 1) = VO)”%z
< C”DGﬁTe”illle_IVOHiz + C€_2C°[||DkVo||iz
< Ce2Cut

<C+1)7*

From the definition of N(V) and Nﬁ//) in (4.20), (5.4), we have

N(V) = N(V) +(0,0,2V27 ' m, 0)" =: N(V), + N(V),.

For the nonlinear item, we can check without difficulty that

DM (NOV) D Oll.2
< Cll(n, v, m, w)(O)ll =D V@)l 2 + CLI(Vn, Vv, Vi, Vw)(@)]| =
+ V20, V)OIl = TP VOl + 11, m)(@)l] 1D (v, WOl 2.

From the conclusion of Proposition (4.1) , we know (4.14) holds, i.e.,

VRO @), IV @5 IV | ow s IV WOl oesy) < C(L +1)72,

and by the Sobolev embedding theorem, we have

2 _6
(IRl z=@3)s VO Lo @3)s 11D 23y WOl o 3)) < CEG(1 +1)75.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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Now for /,, we can obtain

L < Cfot fw Gg(x— 1t —1)* D'(V(, )i - Gg(x — -t — ) & DXNVT ) mdxds
+ Cfot fR Gy(x— -t = 1) % DV, )i - Gl — -, 1 — 5) * DN(N(VC, 8)))ndxdss
<C fol . G (x =1 = 1) % DX(V(, )i - Gzy(x — -, t — ) % DN(N(VE, $)1)mdxds
+ Cfot fRS Gpz(x — 1 = 7) % DX(V(, ) - Gs(x — -, £ — $) % DNV 5))1)dxds
+ Cj: § Gs(x— 1= 1) % DX(V(, ) - Gz(x — - 1 — ) % DN(N(VE 5))1)dxds
+C fot - G(x — 1= 7) % D*(V(, ) - Gs(x — -t — 5) % DX(N(V(, $)1)udxds
+C fo t ., Gy (x — 1 = 1)+ D(V(, )i - Gzg(x — -, 1 — ) % DN(N(V( $))2)dxds
+C fot L Gy (x = 1 = 1) % D(V(-, )i - Gs(x — -, 1 — 8) % DN(N(V( $))2)dxds
+C fo t fR Gslr—-1-1)% DAV, s - Gag(x = -, £ — 5) % DXV )))mdxdss
+ Cj: ng Gs(x— -1 = 1) % D(V(, ) - Gs(x — -, 1 — 5) % DN(N(V(, $))2)dxd's

8

= Ki.
i=1

For K|, we have

!
Ki=C f f Grp(x = - 1= ) * DV, )i - DGryy(x = -, 1 = 5) % D ' (N(V (-, $)1)udxds
0 R3
t
< CID'V(s)ll; f eI, v, m w)(0)l|~ds
0

L®(0,t;L2)

t
+C f e 2|V, Vv, Vi, Vw)(0)l|
0
+ 1V, VW)l 1D u(s)ll 11DV ()l 2 s

t
+C f e 2, m)O|| = 1D v, WYON 2DV ($)ll 2 ds.
0

With the help of (5.11)—(5.13), we can get the estimates of K; as follows. By using Lemma 3.4, we can
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get the estimate for K,

!
Ky < CEJIDV(9)Iu g ro f 2001 4 5y ds + CELVIDV(S)IE
0

L>(0,1;L2)
t
_ - -5 -$

+ C”Dk IV(S)”ioo(OJ;Lz)(f e 2Co(t )(1 + S) 5ds)2

11k 2 O
+ CEGID V(w0 12

) t
+ CE D" (0, W)($)|[F 112, f e 20 (] 1 5)73ds)?
< CEJID Vg, + CA+ 07 ID VO
+ CEJ DM\, WY 12,
< CE; IIDkV(S)llLoo(osz> +CA+07 M4 CEj I, WOl 012y

where we used the (5.1) when @ = k — 1 in the last inequality of the above. The estimate of K3 is
parallel to K, i.e.,

K; < CE“lleV(S)II +C(L+£) W 4 CE; ||Dk+1(v w)()|I?

Le(0,1;L2) Le(0,1,L2)"

By integrating by parts, the estimate of K is similar to K, then we have

K, <CE; ||D"V(s)|| +C(L+1) 27 H 4 CE; ||Dk+1(v w)(s)|I?

L>(0,;L2%) L>(0,51%)"

As for K4, by the defination of Gy, and using (5.12) and (5.13), we have

Ks<C f e 2I(|(Vv, Yw)($)||= 1D (n, m)(S)lliz
0
+|I(n, m)(S)IIL ID** (v, W)(S)IILzlle(n m)(s)|l2)ds

< CE; {ID (n m) (oI +CE; SIDHn, m)(s)I

L2(0,1,L2) L=(0,5;12)

+ CE ||Dk+1(v m)(s)”Loo(();LZ)

< CE} 1D (n, m)(s)|1 +CE; $IDM (v, w)(s)]2

L2(0,1,L2)

+ CESIID"“(V w)()II2

L2(0,1,L2)

< CE} ||DkV(s)||

Le(0,1;L2) Le(0,1,L2)"

By the Gagliardo-Nirenberg inequality, we have

17
IV G, v, m, w)(Oll 23 < CEZ (14173,

IV m(@)ll2es) < VMG IVmlI

[2(R3) 2R3
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Then, for K5, it holds

17 L
< CEX ™1||Dbm(s)| 5 ID*V ()l Lo 0.:12)

0 L°°(0tL2)
17, 1
% K 14422
< CEF ™DV,
k
< CEZS k I ||D V(S)”L‘”(OzLZ)

By the same analysis as K, it holds
Ky < CEZS P IDMV(9)| ey
By the definition of Gz in (3.17) and ]V(\\7)2 in (5.10), we have
Ke + Kg = 0.
Combining the estimate for each K;, and from (5.7), it holds,

IDAVC, t))HIIiz

(5.14)
< C(E4 + E28 . 1)IIDkV(S)II

Tenry FCA D)7 3y CE5||D’<+1(V WY 0122

To close the estimate, we take our attention to the estimate of || D! (v, m)(?)||;2. From (4.14), we know
Zf.:l DFY(G>I(1) V({) + fo’ Z?_:l DFYGI(t — s) « N(V)I(s))ds
Dy = | B8 DM@ @) « V) + [) B DMNGM( - )« N(VYI(s)ds |-
25 DRG0 « V) + [) T DG = 5) * N(VY(5)ds
For the linear partition, we have

IDM (@ (0) # VIR, < C(1+ 730,

For the nonlinear partition, we still adopt the method of high and low frequency decomposition of the
solution. Here we omit the details of the calculation since the analysis is parallel to the estimate of
D*V(2).

For ||D**'v(?)||,2, we have

IDFYVOIR, < €A+ 070D 4 CESAID VSR ) + 1D VOB ). (5:15)
The same way also gives
ID* w(@)ll7, < C(1 + f7ED CE“(IID"V(S)IILM(Oth + 1D W 1120 (5.16)
Combing (5.14)—(5.16), since the E is small enough, we have
ID*VCL DI g2y + 1D )OI,
<CA+D7T* +C+0 30D <ol + 173,
Now we proved (5.1) when a = k. The proposition is proved. O
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