In this paper, we give the relation between a relative Morse index for two continuous symmetric matrices paths in $ {{\bf R}}^{2n} $ satisfying condition (BS1) and the Maslov-type indices under symmetric brake orbit boundary value of these two symmetric matrices paths. As application, we obtain a multiple existence of symmetric brake orbit solutions of asymptotically linear symmetric reversible Hamiltonian systems.
Citation: Jiachen Mu, Duanzhi Zhang. Multiplicity of symmetric brake orbits of asymptotically linear symmetric reversible Hamiltonian systems[J]. Electronic Research Archive, 2022, 30(7): 2417-2427. doi: 10.3934/era.2022123
In this paper, we give the relation between a relative Morse index for two continuous symmetric matrices paths in $ {{\bf R}}^{2n} $ satisfying condition (BS1) and the Maslov-type indices under symmetric brake orbit boundary value of these two symmetric matrices paths. As application, we obtain a multiple existence of symmetric brake orbit solutions of asymptotically linear symmetric reversible Hamiltonian systems.
[1] | D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differ. Equ., 245 (2008), 925–938. https://doi.org/10.1016/j.jde.2008.04.020 doi: 10.1016/j.jde.2008.04.020 |
[2] | H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z., 51 (1948), 197–216. https://doi.org/10.1007/BF01291002 doi: 10.1007/BF01291002 |
[3] | R. Giamb$\grave{{\rm{o}}}$, F. Giannoni, P. Piccione, Multiple brake orbits in m-dimensional disks, Calc. Var. Partial Differ. Equ., 54 (2015), 2553–2580. |
[4] | C. Liu, D. Zhang, Seifert conjecture in the even convex case, Comm. Pure Appl. Math., 67 (2014), 1563–1604. https://doi.org/10.1002/cpa.21525 doi: 10.1002/cpa.21525 |
[5] | G. Fei, Relative morse index and its Application to Hamiltonian systems in the presence of Symmetries, J. Differ. Equ., 122 (1995), 302–315. https://doi.org/10.1006/jdeq.1995.1150 doi: 10.1006/jdeq.1995.1150 |
[6] | D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete. Contin. Dyn. Sys., 5 (2015), 2227–2272. https://doi.org/10.3934/dcds.2015.35.2227 doi: 10.3934/dcds.2015.35.2227 |
[7] | K. C. Chang, J. Q. Liu, M. J. Liu, Nontrivial periodic resonance Hamiltonian systems, In Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), no. 1,103–117. Elsevier Masson. |
[8] | Y. Dong, Maslov type index theory for linear Hamiltonian systems with Bolza boundary value conditions and multiple solutions for nonlinear Hamiltonian systems, Pacific J. Math., 221 (2005), 253–280. https://doi.org/10.2140/pjm.2005.221.253 doi: 10.2140/pjm.2005.221.253 |
[9] | C. Zhu, Y. Long, Maslov-type index theory for symplectic paths and spectral flow. I, Chinese Ann. Math. Ser. B, 20 (1999), 413–424. https://doi.org/10.1142/S0252959999000485 doi: 10.1142/S0252959999000485 |
[10] | C. Conley, E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equation, Comm. Pure Appl. Math., 45 (1984), 1303–1360. https://doi.org/10.1002/cpa.3160370204 doi: 10.1002/cpa.3160370204 |
[11] | S. E. Cappell, R. Lee, E. Y. Miller, On the Maslov-type index, Comm. Pure Appl. Math., 47 (1994), 121–186. |
[12] | Y. Long, D. Zhang, C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math., 203 (2006), 568–635. https://doi.org/10.1016/j.aim.2005.05.005 doi: 10.1016/j.aim.2005.05.005 |
[13] | C. Liu, D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Differ. Equ., 257 (2014), 1194–1245. https://doi.org/10.1016/j.jde.2014.05.006 doi: 10.1016/j.jde.2014.05.006 |
[14] | R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171–206. https://doi.org/10.1002/cpa.3160090204 doi: 10.1002/cpa.3160090204 |
[15] | I. Ekeland, Convexity Methods in Hamiltonian Mechanics. Spring-Verlag, Berlin, 1990. |
[16] | Y. Long, Index Theory for Symplectic Paths with Applications. Birkhäuser, Basel, 2002. |
[17] | V. Benci, On critical point theory for indefinite functionals in the presences of symmetries, Trans. Am. Math. Soc., 274 (1982), 533–572. https://doi.org/10.1090/S0002-9947-1982-0675067-X doi: 10.1090/S0002-9947-1982-0675067-X |
[18] | V. Benci, P. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241–273. https://doi.org/10.1007/BF01389883 doi: 10.1007/BF01389883 |