In the manuscript, we deal with a type of pseudo orbit tracing property and hyperbolicity about a vector field (or a divergence free vector field). We prove that a vector field (or a divergence free vector field) of a smooth closed manifold $ M $ has the robustly ergodic pseudo orbit tracing property then it does not contain any singularities and it is Anosov. Additionally, there is a dense and open set $ \mathcal{R} $ in the set of $ C^1 $ a vector field (or a divergence free vector field) of a smooth closed manifold $ M $ such that given a vector field (or a divergence free vector field) has the ergodic pseudo orbit tracing property then it does not contain singularities and it is Anosov.
Citation: Manseob Lee. Flows with ergodic pseudo orbit tracing property[J]. Electronic Research Archive, 2022, 30(7): 2406-2416. doi: 10.3934/era.2022122
In the manuscript, we deal with a type of pseudo orbit tracing property and hyperbolicity about a vector field (or a divergence free vector field). We prove that a vector field (or a divergence free vector field) of a smooth closed manifold $ M $ has the robustly ergodic pseudo orbit tracing property then it does not contain any singularities and it is Anosov. Additionally, there is a dense and open set $ \mathcal{R} $ in the set of $ C^1 $ a vector field (or a divergence free vector field) of a smooth closed manifold $ M $ such that given a vector field (or a divergence free vector field) has the ergodic pseudo orbit tracing property then it does not contain singularities and it is Anosov.
[1] | A. Arbieto, L. Senos, T. Sodero, The specification property for flows from the robust and generic veiwpoint, J. Diff. Equations, 253 (2012), 1893–1909. https://doi.org/10.1016/j.jde.2012.05.022 doi: 10.1016/j.jde.2012.05.022 |
[2] | M. Bessa, M. Lee, X. Wen, Shadowing, expansiveness and specification for $C^1$-conservative systems, Acta Math. Sci., 35 (2015), 583–600. https://doi.org/10.1016/S0252-9602(15)30005-9 doi: 10.1016/S0252-9602(15)30005-9 |
[3] | M. Bessa, R. Ribeiro, Conservative flows with various types of shadowing, Chaos Soliton. Fract., 75 (2015), 243–252. https://doi.org/10.1016/j.chaos.2015.02.022 doi: 10.1016/j.chaos.2015.02.022 |
[4] | B. Carvalho, Hyperbolicity, transitivity and the two-sided limit shadowing property, Proc. Am. Math. Soc., 143 (2015), 657–666. https://doi.org/10.1090/S0002-9939-2014-12250-7 doi: 10.1090/S0002-9939-2014-12250-7 |
[5] | K. Lee, M. Lee, Divergence-free vector fields with inverse shadowing, Adv. Differ. Equations, 337 (2013). https: //doi.org/10.1186/1687-1847-2013-337 |
[6] | K. Lee, K. Sakai, Structurally stability of vector fields with shadowing, J. Diff. Equations, 232 (2007), 303–313. https://doi.org/10.1016/j.jde.2006.08.012 doi: 10.1016/j.jde.2006.08.012 |
[7] | M. Lee, Orbital shadowing for $C^1$-generic volume-preserving diffeomorphisms, Abstr. Appl. Anal., 2013 (2013). https://doi.org/10.1155/2013/693032 |
[8] | M. Lee, Divergence-free vector fields with orbital shadowing, Adv. Differ. Equations, 132 (2013). https://doi.org/10.1186/1687-1847-2013-132 |
[9] | M. Lee, Orbital shadowing property for generic divergence-free vector fields, Chaos Soliton. Fract., 54 (2013), 71–75. https://doi.org/10.1016/j.chaos.2013.05.013 doi: 10.1016/j.chaos.2013.05.013 |
[10] | M. Lee, Vector fields with stably limit shadowing, Adv. Diff. Equations, 255 (2013). https://doi.org/10.1186/1687-1847-2013-255 |
[11] | M. Lee, The barycenter property for robust and generic diffeomorphisms, Acta Math. Sin., 32 (2016), 975–981. https://doi.org/10.1007/s10114-016-5123-1 doi: 10.1007/s10114-016-5123-1 |
[12] | M. Lee, Vector fields satisfying the barycenter property, Open Math., 16 (2018), 429–436. https://doi.org/10.1515/math-2018-0040 doi: 10.1515/math-2018-0040 |
[13] | M. Lee, Orbital shadowing property on chain transitive sets for generic diffeomorphisms, Acta Univ. Sapientiae Math., 12 (2020), 146–154. https://doi.org/10.2478/ausm-2020-0009 doi: 10.2478/ausm-2020-0009 |
[14] | M. Lee, Eventual shadowing for chain transitive sets of $C^1$ generic dyanmical systems, J. Korean Math. Soc., 58 (2021), 1059–1079. https://doi.org/10.4134/JKMS.j190083 doi: 10.4134/JKMS.j190083 |
[15] | M. Lee, J. Park, Vector fields with the asymptotic orbital pseudo orbit tracing property, Qual. Theor. Dyn. Syst., 19 (2020). https://doi.org/10.1007/s12346-020-00388-z |
[16] | M. Lee, L. Tien, Chain components with the stable shadowing property for $C^1$ vector fields, J. Aust. Math. Soc., 110 (2021), 243–259. https://doi.org/10.1017/S1446788720000415 doi: 10.1017/S1446788720000415 |
[17] | S. Yu. Pilyugin, A. A. Rodionova, K. Sakai, Orbital and weak shadowing properties, Discrete Cont. Dyn. Syst., 9 (2003), 287–308. https://doi.org/10.3934/dcds.2003.9.287 doi: 10.3934/dcds.2003.9.287 |
[18] | R. Ribeiro, Hyperbolicity and types of shadowing for $C^1$-generic vector fields, Discrete Cont. Dyn. Syst., 34 (2014), 2963–2982. https://doi.org/10.3934/dcds.2014.34.2963 doi: 10.3934/dcds.2014.34.2963 |
[19] | K. Sakai, Pseudo-orbit tracing property, and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math., 31 (1994), 373–386. https://doi.org/10.18910/9551 doi: 10.18910/9551 |
[20] | K. Sakai, N. Sumi, K. Yamamoto, Diffeomorphisms satisfying the specification property, Proc. Amer. Math. Soc., 138 (2010), 315–321. https://doi.org/10.1090/S0002-9939-09-10085-0 doi: 10.1090/S0002-9939-09-10085-0 |
[21] | R. F. Thomas, Stability properties of one-parameter flows, Proc. London Math. Soc., 45 (1982), 479–505. https://doi.org/10.1112/plms/s3-45.3.479 doi: 10.1112/plms/s3-45.3.479 |
[22] | A. Fakhari, F. H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal. Appli., 364 (2010), 151–155. https://doi.org/10.1016/j.jmaa.2009.11.004 doi: 10.1016/j.jmaa.2009.11.004 |
[23] | A. Barzanouni, B. Honary, $C^1$ stable ergodic shadowable invariant sets and hyperbolicity, Gen. Math. Notes, 9 (2012), 1–6. |
[24] | M. Lee, Diffeomorphisms with robustly ergodic shadowing, Dyn. Contin. Discrete Impul. Syst., 20 (2013), 747–753. http://online.watsci.org/contents2013/v20n6a.html |
[25] | M. Lee, The ergodic shadowing property from the robust and genric view point, Adv. Diff. Equations, 2014 (2014), 1–7. https://doi.org/10.1186/1687-1847-2014-170 doi: 10.1186/1687-1847-2014-170 |
[26] | M. Lee, The ergodic shadowing property for robust and generic volume-preserving diffeomorphisms, Balkan J. Geom. Its Appl., 20 (2015), 49–56. http://www.mathem.pub.ro/bjga/v20n2/B20-2.htm |
[27] | S. Gan, L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164 (2006), 279–315. https://doi.org/10.1007/s00222-005-0479-3 doi: 10.1007/s00222-005-0479-3 |
[28] | S. Hayashi, Diffeomorphisms in $\mathcal{F}(M)$ satisfy Axiom A, Ergod. Theor. Dyn. Syst., 12 (1992), 233–253. https://doi.org/10.1017/S0143385700006726 doi: 10.1017/S0143385700006726 |
[29] | I. Kupka, Contribution ála theéorie des champs génériques, Contrib. Diff. Equations, 2 (1963), 457–484. |
[30] | C. Zuppa, Regularisation $C^{\infty}$ des champs vectoriels qui préservent lélément de volume, Bol. Soc. Bras. Mat., 10 (1979), 51–56. https://doi.org/10.1007/BF02584629 doi: 10.1007/BF02584629 |
[31] | J. M. Alongi, G. S. Nelson, Recurrence and topology, Graduate Stud. Math., 85, (2007). http://dx.doi.org/10.1090/gsm/085 |
[32] | C. Ferreira Stability properties of divergence-free vector fields, Dyn. Syst., 27 (2012), 223–238. https://doi.org/10.1080/14689367.2012.655710 |
[33] | M. Komuro, One-parameter flows with the pseudo orbit tracing property, Monat. Math., 98 (1984), 219–253. https://doi.org/10.1007/BF01507750 doi: 10.1007/BF01507750 |
[34] | K. Moriyasu, K. Sakai, N. Sumi, Vector fields with topological stability, Trans. Amer. Math. Soc., 353 (2001), 3391–3408. https://doi.org/10.1090/S0002-9947-01-02748-9 doi: 10.1090/S0002-9947-01-02748-9 |
[35] | T. Vivier, Projective hyperbolcity and fixed points, Ergod. Theor. Dyn. Syst., 26 (2006), 923–936. https://doi.org/10.1017/S0143385705000581 doi: 10.1017/S0143385705000581 |