In this paper, we study an initial value problem with a weakly singular nonlinear fractional differential equation of higher order. First, we establish the existence of global solutions to the problem within the appropriate function space. We then introduce a generalized Riemann-Liouville mean value theorem. Using this theorem, we prove the Nagumo-type uniqueness theorem for the stated problem. Moreover, we give two examples to illustrate the applicability of the existence and uniqueness theorems.
Citation: Mufit San, Seyma Ramazan. A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity[J]. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141
In this paper, we study an initial value problem with a weakly singular nonlinear fractional differential equation of higher order. First, we establish the existence of global solutions to the problem within the appropriate function space. We then introduce a generalized Riemann-Liouville mean value theorem. Using this theorem, we prove the Nagumo-type uniqueness theorem for the stated problem. Moreover, we give two examples to illustrate the applicability of the existence and uniqueness theorems.
[1] | J. R. L. Webb, Initial value problems for Caputo fractional equations with singular nonlinearities, Electron. J. Differ. Equations, 2019 (2019), 1–32. |
[2] | K. Lan, Equivalence of higher order linear Riemann-Liouville fractional differential and integral equations, Proc. Am. Math. Soc., 148 (2020), 5225–5234. https://doi.org/10.1090/proc/15169 doi: 10.1090/proc/15169 |
[3] | J. R. L. Webb, A fractional Gronwall inequality and the asymptotic behaviour of global solutions of Caputo fractional problems, Electron. J. Differ. Equations, 2021 (2021), 1–22. https://doi.org/10.58997/ejde.2021.80 doi: 10.58997/ejde.2021.80 |
[4] | N. M. Dien, Weakly singular Henry-Gronwall-Bihari type inequalities and their applications, J. Math. Inequal., 16 (2022), 289–306. https://doi.org/10.7153/jmi-2022-16-21 doi: 10.7153/jmi-2022-16-21 |
[5] | T. Zhu, Weakly singular integral inequalities and global solutions for fractional differential equations of Riemann-Liouville type, Mediterr. J. Math., 18 (2021), 1–17. https://doi.org/10.1007/s00009-021-01824-3 doi: 10.1007/s00009-021-01824-3 |
[6] | R. P. Agarwal, V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific Publishing, Washington, 1993. https://doi.org/10.1142/1988 |
[7] | K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's fractional calculus, Fract. Calc. Appl. Anal., 15 (2012), 304–313. https://doi.org/10.2478/s13540-012-0022-3 doi: 10.2478/s13540-012-0022-3 |
[8] | V. Lakshmikantham, S. Leela, Nagumo-type uniqueness result for fractional differential equations, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 2886–2889. https://doi.org/10.1016/j.na.2009.01.169 doi: 10.1016/j.na.2009.01.169 |
[9] | U. Sert, M. San, Some analysis on a fractional differential equation with a right-hand side which has a discontinuity at zero, Hacet. J. Math. Stat., 49 (2020), 1718–1725. https://doi.org/10.15672/hujms.512563 doi: 10.15672/hujms.512563 |
[10] | E. Aljarallah, I. Bachar, Existence and global asymptotic behavior of positive solutions for superlinear singular fractional boundary value problems, Fractal Fract., 7 (2023), 527. https://doi.org/10.3390/fractalfract7070527 doi: 10.3390/fractalfract7070527 |
[11] | L. P. Castro, A. S. Silva, On the existence and stability of solutions for a class of fractional Riemann-Liouville initial value problems, Mathematics, 11 (2023), 297. https://doi.org/10.3390/math11020297 doi: 10.3390/math11020297 |
[12] | L. Guo, W. Wang, C. Li, J. Zhao, D. Min, Existence results for a class of nonlinear singular $ p $-Laplacian Hadamard fractional differential equations, Electron. Res. Arch., 32 (2024), 928–944. https://doi.org/10.3934/era.2024045 doi: 10.3934/era.2024045 |
[13] | C. Li, S. Sarwar, Existence and continuation of solutions for Caputo-type fractional differential equations, Electron. J. Differ. Equations, 207 (2016), 1–14. |
[14] | Y. Sheng, T. Zhang, The existence theory of solution in Sobolev space for fractional differential equations, Appl. Math. Lett., 149 (2024), 108896. https://doi.org/10.1016/j.aml.2023.108896 doi: 10.1016/j.aml.2023.108896 |
[15] | M. San, Complex variable approach to the analysis of a fractional differential equation in the real line, C. R. Math., 356 (2018), 293–300. https://doi.org/10.1016/j.crma.2018.01.008 doi: 10.1016/j.crma.2018.01.008 |
[16] | S. S. Bilgici, M. San, Existence and uniqueness results for a nonlinear singular fractional differential equation of order $\sigma \in (1, 2), $ AIMS Math., 6 (2021), 13041–13056. https://doi.org/10.3934/math.2021754 |
[17] | X. Su, S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl., 61 (2011), 1079–1087. https://doi.org/10.1016/j.camwa.2010.12.058 doi: 10.1016/j.camwa.2010.12.058 |
[18] | W. Jiang, Solvability for fractional differential equations at resonance on the half line, Appl. Math. Comput., 247 (2014), 90–99. https://doi.org/10.1016/j.amc.2014.08.067 doi: 10.1016/j.amc.2014.08.067 |
[19] | X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Methods Appl. Sci., 41 (2018), 6984–6996. https://doi.org/10.1002/mma.5210 doi: 10.1002/mma.5210 |
[20] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993. |
[21] | C. Li, W. Deng, Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 777–784. https://doi.org/10.1016/j.amc.2006.08.163 doi: 10.1016/j.amc.2006.08.163 |
[22] | E. Zeidler, Nonlinear Functional Analysis and its Applications, I: Fixed-point Theorems, Springer, New York, 1986. |