Research article

Sufficient and necessary conditions of near-optimal controls for a stochastic listeriosis model with spatial diffusion

  • Received: 26 November 2023 Revised: 28 March 2024 Accepted: 16 April 2024 Published: 23 April 2024
  • Random environment and human activities have important effects on the survival of listeria. In this paper, treating infected people and removing bacteria from the environment as control strategies, we developed a listeriosis model that considers random noise and spatial diffusion. By constructing a Lyapunov function, we demonstrated the existence and uniqueness of the global positive solution of the model. However, it was a challenging task to realize the optimal control of the model by solving the Pontryagin random maximum principle with the lowest control cost. Therefore, our study on near-optimal controls is of great significance for controlling the spread of listeriosis. Initially, we gave some adjoint equations and a priori estimates. Subsequently, the Pontryagin random maximum principle was utilized to establish the sufficient and necessary conditions for achieving near-optimal controls. Ultimately, the theoretical findings are corroborated through numerical analysis.

    Citation: Zhaoyan Meng, Shuting Lyu, Mengqing Zhang, Xining Li, Qimin Zhang. Sufficient and necessary conditions of near-optimal controls for a stochastic listeriosis model with spatial diffusion[J]. Electronic Research Archive, 2024, 32(5): 3059-3091. doi: 10.3934/era.2024140

    Related Papers:

  • Random environment and human activities have important effects on the survival of listeria. In this paper, treating infected people and removing bacteria from the environment as control strategies, we developed a listeriosis model that considers random noise and spatial diffusion. By constructing a Lyapunov function, we demonstrated the existence and uniqueness of the global positive solution of the model. However, it was a challenging task to realize the optimal control of the model by solving the Pontryagin random maximum principle with the lowest control cost. Therefore, our study on near-optimal controls is of great significance for controlling the spread of listeriosis. Initially, we gave some adjoint equations and a priori estimates. Subsequently, the Pontryagin random maximum principle was utilized to establish the sufficient and necessary conditions for achieving near-optimal controls. Ultimately, the theoretical findings are corroborated through numerical analysis.



    加载中


    [1] A. Schuchat, B. Swaminathan, C. V. Broome, Epidemiology of human listeriosis, Clin. Microbiol. Rev., 4 (1991), 169–183. https://doi.org/10.1128/cmr.4.2.169 doi: 10.1128/cmr.4.2.169
    [2] K. Hu, S. Renly, S. Edlund, M. Davis, J. Kaufman, A modeling framework to accelerate food-borne outbreak investigations, Food Control, 59 (2015), 53–58. https://doi.org/10.1016/j.foodcont.2015.05.017 doi: 10.1016/j.foodcont.2015.05.017
    [3] H. Hof, History and epidemiology of listeriosis, FEMS Immunol. Med. Microbiol., 35 (2003), 199–202. https://doi.org/10.1016/S0928-8244(02)00471-6 doi: 10.1016/S0928-8244(02)00471-6
    [4] C. W. Chukwu, J. Mushanyu, M. L. Juga, A mathematical model for co-dynamics of listeriosis and bacterial meningitis diseases, Commun. Math. Biol. Neurosci., 2020. https://doi.org/10.28919/cmbn/5060
    [5] WHO, World Health Organization Accessed 2019-12-16. Available from: https://www.who.int/news-room/fact-sheets/detail/listeriosis.
    [6] P. J. Witbooi, C. Africa, A. Christoffels, I. H. I. Ahmed, A population model for the 2017/18 listeriosis outbreak in South Africa, PLoS One, 15 (2020), e0229901. https://doi.org/10.1371/journal.pone.0229901 doi: 10.1371/journal.pone.0229901
    [7] J. K. K. Asamoah, E. Addai, Y. D. Arthur, E. Okyere, A fractional mathematical model for listeriosis infection using two kernels, Decis. Anal. J., 6 (2023), 100191. https://doi.org/10.1016/j.dajour.2023.100191 doi: 10.1016/j.dajour.2023.100191
    [8] C. W. Chukwu, F. Nyabadza, A theoretical model of listeriosis driven by cross contamination of ready-to-eat food products, Int. J. Math. Math. Sci., (2020), 1–14. https://doi.org/10.1155/2020/9207403
    [9] S. Osman, O. D. Makinde, D. M. Theuri, Stability analysis and modelling of listeriosis dynamics in human and animal populations, Global J. Pure Appl. Math., 14 (2018), 115–138.
    [10] C. W. Chukwu, F. Nyabadza, Modeling the potential role of media campaigns on the control of listeriosis, preprint, medRxiv: 2020.12.22.20248698. https://doi.org/10.1101/2020.12.22.20248698
    [11] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X
    [12] F. Zhang, X. Zhang, The threshold of a stochastic avian–human influenza epidemic model with psychological effect, Physica A, 492 (2018), 485–495. https://doi.org/10.1016/j.physa.2017.10.043 doi: 10.1016/j.physa.2017.10.043
    [13] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates, J. Franklin Inst., 356 (2019), 2960–2993. https://doi.org/10.1016/j.jfranklin.2019.01.038 doi: 10.1016/j.jfranklin.2019.01.038
    [14] S. Osman, D. Otoo, C. Sebil, Analysis of listeriosis transmission dynamics with optimal control, Appl. Math., 11 (2020), 712–737. https://doi.org/10.4236/am.2020.117048 doi: 10.4236/am.2020.117048
    [15] C. W. Chukwu, F. Nyabadza, J. K. K. Asamoah, A mathematical model and optimal control for listeriosis disease from ready-to-eat food products, Int. J. Comput. Sci. Math., 17 (2023), 39–49. https://doi.org/10.1504/IJCSM.2023.130421 doi: 10.1504/IJCSM.2023.130421
    [16] R. Akella, P. R. Kumar, Optimal control of production rate in a failure prone manufacturing system, IEEE Trans. Autom. Control, 31 (1986), 116–126. https://doi.org/10.1109/TAC.1986.1104206 doi: 10.1109/TAC.1986.1104206
    [17] Q. Gan, R. Xu, P. Yang, Travelling waves of a delayed SIRS epidemic model with spatial diffusion, Nonlinear Anal. Real World Appl., 12 (2011), 52–68. https://doi.org/10.1016/j.nonrwa.2010.05.035 doi: 10.1016/j.nonrwa.2010.05.035
    [18] S. Jana, S. K. Nandi, T. K. Kar, Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment, Acta Biotheor., 64 (2016), 65–84. https://doi.org/10.1007/s10441-015-9273-9 doi: 10.1007/s10441-015-9273-9
    [19] X. Zhou, Stochastic near-optimal controls: necessary and sufficient conditions for near-optimality, SIAM J. Control Optim., 36 (1998), 929–947. https://doi.org/10.1137/S0363012996302664 doi: 10.1137/S0363012996302664
    [20] F. H. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial and Applied Mathematics, 1990.
    [21] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0
    [22] Y. Wang, Z. Wu, Necessary and sufficient conditions for near-optimality of stochastic delay systems, Int. J. Control, 91 (2018), 1730–1744. https://doi.org/10.1080/00207179.2017.1327725 doi: 10.1080/00207179.2017.1327725
    [23] M. Hafayed, S. Abbas, On near-optimal mean-field stochastic singular controls: Necessary and sufficient conditions for near-optimality, J. Optim. Theory Appl., 160 (2014), 778–808. https://doi.org/10.1007/s10957-013-0361-1 doi: 10.1007/s10957-013-0361-1
    [24] X. Zhang, R. Yuan, Sufficient and necessary conditions for stochastic near-optimal controls: A stochastic chemostat model with non-zero cost inhibiting, Appl. Math. Modell., 78 (2020), 601–626. https://doi.org/10.1016/j.apm.2019.10.013 doi: 10.1016/j.apm.2019.10.013
    [25] F. H. Clarke, Nonsmooth analysis and optimization, in Proceedings of the International Congress of Mathematicians, 5 (1983), 847–853.
    [26] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [27] R. Buchholz, H. Engel, E. Kammann, F. Tr$\ddot{o}$ltzsch, Erratum to: On the optimal control of the Schl$\ddot{o}$gl-model, Comput. Optim. Appl., 56 (2013), 187–188. https://doi.org/10.1007/s10589-013-9570-7 doi: 10.1007/s10589-013-9570-7
    [28] W. W. Hager, H. Zhang, Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent, ACM Trans. Math. Software, 32 (2006), 113–137. https://doi.org/10.1145/1132973.1132979 doi: 10.1145/1132973.1132979
    [29] C. W. Chukwu, F. Nyabadza, A theoretical model of listeriosis driven by cross contamination of ready-to-eat food products, Int. J. Math. Math. Sci., 2020 (2020), 1–14. https://doi.org/10.1155/2020/9207403 doi: 10.1155/2020/9207403
    [30] C. W. Chukwu, F. Nyabadza, Mathematical modeling of listeriosis incorporating effects of awareness programs, Math. Models Comput. Simul., 13 (2021), 723–741. https://doi.org/10.1134/S2070048221040116 doi: 10.1134/S2070048221040116
    [31] G. Zhang, Q. Zhu, Event-triggered optimal control for nonlinear stochastic systems via adaptive dynamic programming, Nonlinear Dyn., 105 (2021), 387–401. https://doi.org/10.1007/s11071-021-06624-8 doi: 10.1007/s11071-021-06624-8
    [32] X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007. https://doi.org/10.1533/9780857099402
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(570) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog