Research article

Asymptotic stability for solutions of a coupled system of quasi-linear viscoelastic Kirchhoff plate equations

  • Received: 07 February 2023 Revised: 16 March 2023 Accepted: 23 March 2023 Published: 19 April 2023
  • In this manuscript, we study the asymptotic stability of solutions of two coupled quasi-linear viscoelastic Kirchhoff plate equations involving free boundary conditions, and accounting for rotational forces

    $ \begin{eqnarray*} &&\vert y_t\vert^{\rho}y_{tt}-\Delta y_{tt}+\Delta^{2}y- \int_0^t h_1(t-s)\Delta^2 y(s)\;ds+f_1(y, z) = 0,\\\\ &&\vert z_t\vert^{\rho}z_{tt}-\Delta z_{tt}+\Delta^{2}z- \int_0^t h_2(t-s)\Delta^2 z(s)\;ds+f_2(y, z) = 0. \end{eqnarray*} $

    The system under study in this contribution could be seen as a model for two stacked plates. This work is motivated by previous works about coupled quasi-linear wave equations or concerning single quasi-linear Kirchhoff plate. The existence of local weak solutions is established by the Faedo-Galerkin approach. By using the perturbed energy method, we prove a general decay rate of the energy for a wide class of relaxation functions.

    Citation: Zayd Hajjej. Asymptotic stability for solutions of a coupled system of quasi-linear viscoelastic Kirchhoff plate equations[J]. Electronic Research Archive, 2023, 31(6): 3471-3494. doi: 10.3934/era.2023176

    Related Papers:

  • In this manuscript, we study the asymptotic stability of solutions of two coupled quasi-linear viscoelastic Kirchhoff plate equations involving free boundary conditions, and accounting for rotational forces

    $ \begin{eqnarray*} &&\vert y_t\vert^{\rho}y_{tt}-\Delta y_{tt}+\Delta^{2}y- \int_0^t h_1(t-s)\Delta^2 y(s)\;ds+f_1(y, z) = 0,\\\\ &&\vert z_t\vert^{\rho}z_{tt}-\Delta z_{tt}+\Delta^{2}z- \int_0^t h_2(t-s)\Delta^2 z(s)\;ds+f_2(y, z) = 0. \end{eqnarray*} $

    The system under study in this contribution could be seen as a model for two stacked plates. This work is motivated by previous works about coupled quasi-linear wave equations or concerning single quasi-linear Kirchhoff plate. The existence of local weak solutions is established by the Faedo-Galerkin approach. By using the perturbed energy method, we prove a general decay rate of the energy for a wide class of relaxation functions.



    加载中


    [1] M. M. Cavalcanti, V. N. D. Cavalcanti, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. https://doi.org/10.1002/mma.250 doi: 10.1002/mma.250
    [2] J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Publications Library, Philadelphia, 1989. https://doi.org/10.1137/1.9781611970821
    [3] S. A. Messaoudi, N. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665–680. https://doi.org/10.1002/mma.804 doi: 10.1002/mma.804
    [4] S. A. Messaoudi, N. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal., 68 (2008), 785–793. https://doi.org/10.1016/j.na.2006.11.036 doi: 10.1016/j.na.2006.11.036
    [5] X. Han, M. Wang, Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equation with damping and source, Nonlinear Anal., 71 (2009), 5427–5450. https://doi.org/10.1016/j.na.2009.04.031 doi: 10.1016/j.na.2009.04.031
    [6] W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys, 50 (2009), 113506. https://doi.org/10.1063/1.3254323 doi: 10.1063/1.3254323
    [7] W. Liu, General decay and blow up of solution for a quasilinear viscoelastic equation with a nonlinear source, Nonlinear Anal., 73 (2010), 1890–1904. https://doi.org/10.1016/j.na.2010.05.023 doi: 10.1016/j.na.2010.05.023
    [8] S. A. Messaoudi, M. Mustafa, A general stability result for a quasilinear wave equation with memory, Nonlinear Anal., 14 (2013), 1854–1864. https://doi.org/10.1016/j.nonrwa.2012.12.002 doi: 10.1016/j.nonrwa.2012.12.002
    [9] M. M. Cavalcanti, V. N. D. Cavalcanti, I. Lasiecka, C. M. Webler, Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density, Adv. Nonlinear. Anal., 6 (2017), 121–145. https://doi.org/10.1515/anona-2016-0027 doi: 10.1515/anona-2016-0027
    [10] S. A. Messaoudi, W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16–22. https://doi.org/10.1016/j.aml.2016.11.002 doi: 10.1016/j.aml.2016.11.002
    [11] M. M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, Well-posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity, Appl. Anal., 99 (2020), 50–74. https://doi.org/10.1080/00036811.2018.1484910 doi: 10.1080/00036811.2018.1484910
    [12] A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Bound. Value Probl., 2020 (2020), 84. https://doi.org/10.1186/s13661-020-01382-9 doi: 10.1186/s13661-020-01382-9
    [13] B. K. Kakumani, S. P. Yadav, Decay estimate in a viscoelastic plate equation with past history, nonlinear damping, and logarithmic nonlinearity, Bound. Value Probl., 2022 (2022), 95. https://doi.org/10.1186/s13661-022-01674-2 doi: 10.1186/s13661-022-01674-2
    [14] W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonlinear Anal., 71 (2009), 2257–2267. https://doi.org/10.1016/j.na.2009.01.060 doi: 10.1016/j.na.2009.01.060
    [15] L. He, On decay of solutions for a system of coupled viscoelastic equations, Acta Appl. Math., 167 (2020), 171–198. https://doi.org/10.1007/s10440-019-00273-1 doi: 10.1007/s10440-019-00273-1
    [16] M. I. Mustafa, M. Kafini, Decay rates for a coupled quasilinear system of nonlinear viscoelastic equations, J. Appl. Anal., 25 (2019), 97–110. https://doi.org/10.1515/jaa-2019-0011 doi: 10.1515/jaa-2019-0011
    [17] J. Y. Park, S. H. Park, General decay for a quasilinear system of viscoelastic equations with nonlinear damping, Acta Math. Sci., 32 (2012), 1321–1332. https://doi.org/10.1016/S0252-9602(12)60101-5 doi: 10.1016/S0252-9602(12)60101-5
    [18] E. Pişkin, F. Ekinci, Global existence and general decay of solutions for quasilinear system with degenerate damping terms, in Conference Proceeding of Science and Technology, 3 (2020), 222–226.
    [19] X. Q. Fang, H. W. Ma, C. S. Zhu, Non-local multi-fields coupling response of a piezoelectric semiconductor nanofiber under shear force, Mech. Adv. Mater. Struct., (2023). https://doi.org/10.1080/15376494.2022.2158503 doi: 10.1080/15376494.2022.2158503
    [20] C. S. Zhu, X. Q. Fang, J. X. Liu, Relationship between nonlinear free vibration behavior and nonlinear forced vibration behavior of viscoelastic plates, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106926. https://doi.org/10.1016/j.cnsns.2022.106926 doi: 10.1016/j.cnsns.2022.106926
    [21] S. Nicaise, Polygonal Interface Problems, Peter Lang, Berlin, 1993.
    [22] J. E. M. Rivera, E. C. Lapa, R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity, 44 (1996), 61–87. https://doi.org/10.1007/BF00042192 doi: 10.1007/BF00042192
    [23] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, 2$^{nd}$ edition, Dunod, Paris, 2002.
    [24] M. Lacroix-Sonrier, Distrubutions Espace de Sobolev Application, Ellipses, Paris, 1998.
    [25] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(880) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog