Research article

The uniform asymptotic behavior of solutions for 2D g-Navier-Stokes equations with nonlinear dampness and its dimensions

  • Received: 14 January 2023 Revised: 13 April 2023 Accepted: 21 April 2023 Published: 16 May 2023
  • In this paper, the uniform asymptotic behavior of solutions for 2D g-Navier-Stokes equations with nonlinear dampness is studied in unbounded domain. The uniform asymptotic properties of the process family is proved with the energy equation method and the uniform attractor is obtained. Finally, the dimension of the uniform attractor is estimated in the quasi-periodical case.

    Citation: Xiaoxia Wang, Jinping Jiang. The uniform asymptotic behavior of solutions for 2D g-Navier-Stokes equations with nonlinear dampness and its dimensions[J]. Electronic Research Archive, 2023, 31(7): 3963-3979. doi: 10.3934/era.2023201

    Related Papers:

  • In this paper, the uniform asymptotic behavior of solutions for 2D g-Navier-Stokes equations with nonlinear dampness is studied in unbounded domain. The uniform asymptotic properties of the process family is proved with the energy equation method and the uniform attractor is obtained. Finally, the dimension of the uniform attractor is estimated in the quasi-periodical case.



    加载中


    [1] G. R. Sell, Global attractor for the three dimensional Navier-Stokes equations, J. Dynam. Differ. Equations, 8 (1996), 1â€"33. https://doi.org/10.1007/BF02218613 doi: 10.1007/BF02218613
    [2] R. Temam, Infnite-Dimensional Dynamical Systems in Mechanics and Physics, 2ed edition, Springer-Verlag, New York, 1997.
    [3] J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475â€"502. http://dx.doi.org/10.1007/s003329900050 doi: 10.1007/s003329900050
    [4] F. Flandoli, B. Schmalfu$\beta$, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dyn. Differ. Equations, 11 (1999), 355â€"398. https://doi.org/10.1023/A:1021937715194 doi: 10.1023/A:1021937715194
    [5] J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction To Dissipative Parabolic Pdes And The Theory Of Global Attractors, Cambridge University Press, 2001.
    [6] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, 2002.
    [7] Y. R. Hou, K. T. Li, The uniform attractor for the 2D non-autonomous Navier-Stokes flow in some unbounded domain, Nonlinear Anal., 58 (2004), 609â€"630. https://doi.org/10.1016/j.na.2004.02.031 doi: 10.1016/j.na.2004.02.031
    [8] A. Cheskidov, C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differ. Equations, 231 (2006), 714â€"754. https://doi.org/10.1016/j.jde.2006.08.021 doi: 10.1016/j.jde.2006.08.021
    [9] A. V. Kapustyan, J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differ. Equations, 240 (2007), 249â€"278. https://doi.org/10.1016/j.jde.2007.06.008 doi: 10.1016/j.jde.2007.06.008
    [10] X. J. Cai, Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799â€"809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041
    [11] A. Cheskidov, S. S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277â€"306. https://doi.org/10.1016/j.aim.2014.09.005 doi: 10.1016/j.aim.2014.09.005
    [12] X. L. Song, Y. R. Hou, Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337â€"351. https://doi.org/10.1016/j.jmaa.2014.08.044 doi: 10.1016/j.jmaa.2014.08.044
    [13] A. M. Alghamdi, S. Gala, M. A. Ragusa, Global regularity for the 3D micropolar fluid flows, Filomat, 36 (2022), 1967â€"1970. https://doi.org/10.2298/FIL2206967A doi: 10.2298/FIL2206967A
    [14] E. M. Elsayed, R. S. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Function Spaces, 2022 (2022). https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
    [15] H. Fang, Y. H. Fan, Y. P. Zhou, Energy equality for the compressible Navier-Stokes-Korteweg equations, AIMS Math., 7 (2022), 5808â€"5820. https://doi.org/10.3934/math.2022321 doi: 10.3934/math.2022321
    [16] J. Roh, g-Navier-Stokes Equations, Ph.D. thesis, Minnesota University, 2001.
    [17] H. O. Bae, J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwan. J. Math, 8 (2004), 85â€"102. https://doi.org/10.11650/twjm/1500558459 doi: 10.11650/twjm/1500558459
    [18] J. Roh, Dynamics of the g-Navier-Stokes equations, J. Differ. Equations, 211 (2005), 452â€"484. https://doi.org/10.1016/j.jde.2004.08.016 doi: 10.1016/j.jde.2004.08.016
    [19] M. Kwak, H. Kweana, J. Roh, The dimension of attractor of the 2D g-Navier-Stokes equations, J. Math. Anal. Appl, 315 (2006), 435â€"461. https://doi.org/10.1016/j.jmaa.2005.04.050 doi: 10.1016/j.jmaa.2005.04.050
    [20] J. P. Jiang, Y. R. Hou, The global attractor of g-Navier-Stokes equations with linear dampness on R$^2$, Appl. Math. Comput, 215 (2009), 1068â€"1076. https://doi.org/10.1016/j.amc.2009.06.035 doi: 10.1016/j.amc.2009.06.035
    [21] J. P. Jiang, X. X. Wang, Global attractor of 2D autonomous g-Navier-Stokes equations, Appl. Math. Mech., 34 (2013), 385â€"394. https://doi.org/10.1007/s10483-013-1678-7 doi: 10.1007/s10483-013-1678-7
    [22] J. P. Jiang, Y. R. Hou, Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains, Appl. Math. Mech., 3 (2010), 697â€"708. https://doi.org/10.1007/s10483-010-1304-x doi: 10.1007/s10483-010-1304-x
    [23] J. P. Jiang, Y. R. Hou, X. X. Wang, Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with linear dampness, Appl. Math. Mech., 32 (2011), 151â€"166. https://doi.org/10.1007/s10483-011-1402-x doi: 10.1007/s10483-011-1402-x
    [24] J. P. Jiang, Y. R. Hou, X. X. Wang, The pullback asymptotic behavior of the solutions for 2D nonautonomous g-Navier-Stokes equations, Adv. Appl. Math. Mech., 4 (2012), 223â€"237. https://doi.org/10.4208/aamm.10-m1071 doi: 10.4208/aamm.10-m1071
    [25] C. T. Anh, D. T. Quyet, Long-time behavior for 2D non-autonomous g-Navier-Stokes equations, Ann. Polonici Math, 103 (2012), 277â€"302. https://doi.org/10.4064/ap103-3-5 doi: 10.4064/ap103-3-5
    [26] C. T. Anh, N. V. Thanh, N. V. Tuan, On the stability of solutions to stochastic 2D g-Navier-Stokes equations with fnite delays, Random Oper. Stoch. Equations, 25 (2017), 1â€"14. https://doi.org/10.1515/rose-2017-0016 doi: 10.1515/rose-2017-0016
    [27] D. T. Quyet, Pullback attractors for strong solutions of 2D non-autonomous g-Navier-Stokes equations, Acta Math. Vietnam, 40 (2015), 637â€"651. https://doi.org/10.1007/s40306-014-0073-0 doi: 10.1007/s40306-014-0073-0
    [28] X. X. Wang, J. P. Jiang, The long time behavior of 2D non-autonomous g-Navier-Stokes equations with weakly dampness and time delay, J. Function Space, 2022 (2022). https://doi.org/10.1155/2022/2034264 doi: 10.1155/2022/2034264
    [29] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlineaires, Paris, 1969.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1010) PDF downloads(61) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog