This paper is concerned the determination of trajectories for the three-dimensional Navier-Stokes equations with nonlinear damping subject to periodic boundary condition. By using the energy estimate of Galerkin approximated equation, the finite number of determining modes and asymptotic determined functionals have been shown via the Grashof numbers for the non-autonomous and autonomous damped Navier-Stokes fluid flow respectively.
Citation: Wei Shi, Xinguang Yang, Xingjie Yan. Determination of the 3D Navier-Stokes equations with damping[J]. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197
This paper is concerned the determination of trajectories for the three-dimensional Navier-Stokes equations with nonlinear damping subject to periodic boundary condition. By using the energy estimate of Galerkin approximated equation, the finite number of determining modes and asymptotic determined functionals have been shown via the Grashof numbers for the non-autonomous and autonomous damped Navier-Stokes fluid flow respectively.
[1] | A. M. Alghamdi, S. Gala, M. A. Ragusa, Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components, Siberian Electron. Math. Rep., 19 (2022), 309–315. https://doi.org/10.33048/semi.2022.19.025 doi: 10.33048/semi.2022.19.025 |
[2] | A. Choucha, S. Boulaaras, D. Ouchenane, Exponential decay and global existence of solutions of a singular nonlocal viscoelastic system with distributed delay and damping terms, Filomat, 35 (2021), 795–826. https://doi.org/10.2298/FIL2103795C doi: 10.2298/FIL2103795C |
[3] | C. S. Dou, Z. S. Zhao, Analytical solution to 1D compressible Navier-Stokes equations, J. Funct. Spaces, 2021 (2021), 6339203. https://doi.org/10.1155/2021/6339203 doi: 10.1155/2021/6339203 |
[4] | C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001. |
[5] | J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[6] | J. C. Robinson, J. L. Rodrigo, W. Sadowski, The Three-Dimensional Navier-Stokes Equations, Cambridge University Press, Cambridge, 2016. |
[7] | R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Philadelphia, PA, 1995. |
[8] | J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475–502. https://doi.org/10.1007/s003329900037 doi: 10.1007/s003329900037 |
[9] | A. Cheskidov, C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differ. Equations, 231 (2006), 714–754. https://doi.org/10.1016/j.jde.2006.08.021 doi: 10.1016/j.jde.2006.08.021 |
[10] | X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041 |
[11] | F. Li, B. You, Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 55–80. https://doi.org/10.3934/dcdsb.2019172 doi: 10.3934/dcdsb.2019172 |
[12] | F. Li, B. You, Y. Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4267–4284. https://doi.org/10.3934/dcdsb.2018137 doi: 10.3934/dcdsb.2018137 |
[13] | D. Pardo, J. Valero, Á. Giménez, Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3569–3590. https://doi.org/10.3934/dcdsb.2018279 doi: 10.3934/dcdsb.2018279 |
[14] | X. L. Song, Y. R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239–252. https://doi.org/10.3934/dcds.2011.31.239 doi: 10.3934/dcds.2011.31.239 |
[15] | C. Foias, O. P. Manley, R. Temam, Y. M. Trève, Asymptotic analysis of the Navier-Stokes equations, Physica D, 9 (1983), 157–188. https://doi.org/10.1016/0167-2789(83)90297-X doi: 10.1016/0167-2789(83)90297-X |
[16] | D. A. Jones, E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 875–887. https://doi.org/10.1512/iumj.1993.42.42039 doi: 10.1512/iumj.1993.42.42039 |
[17] | P. Constantin, P. Foias, R. Temam, On the dimension of the attractors in two-dimensional turbulence, Physica D, 30 (1988), 284–296. https://doi.org/10.1016/0167-2789(88)90022-X doi: 10.1016/0167-2789(88)90022-X |
[18] | R. Selmi, A. Châabani, Well-posedness, stability and determining modes to 3D Burgers equation in Gevrey class, Z. Angew. Math. Phys., 71 (2020), 162. https://doi.org/10.1007/s00033-020-01389-3 doi: 10.1007/s00033-020-01389-3 |
[19] | J. C. Kuang, Applied Inequalities (Changyong Budengshi), 2$^{\text{nd}}$ edition, Hunan Education Publishing House, 1993. |
[20] | B. L. Guo, P. C. Zhu, Partial regularity of suitable weak solutions to the system of the incompressible Non-Newtonian fluids, J. Differ. Equations, 178 (2002), 281–297. https://doi.org/10.1006/jdeq.2000.3958 doi: 10.1006/jdeq.2000.3958 |
[21] | V. Kalantarov, A. Kostianko, S. Zelik, Determining functionals and finite-dimensional reduction for dissipative PDEs revisited, preprint, arXiv: 2111.04125. |