Research article Special Issues

Determination of the 3D Navier-Stokes equations with damping


  • Received: 14 July 2022 Revised: 15 August 2022 Accepted: 21 August 2022 Published: 25 August 2022
  • This paper is concerned the determination of trajectories for the three-dimensional Navier-Stokes equations with nonlinear damping subject to periodic boundary condition. By using the energy estimate of Galerkin approximated equation, the finite number of determining modes and asymptotic determined functionals have been shown via the Grashof numbers for the non-autonomous and autonomous damped Navier-Stokes fluid flow respectively.

    Citation: Wei Shi, Xinguang Yang, Xingjie Yan. Determination of the 3D Navier-Stokes equations with damping[J]. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197

    Related Papers:

  • This paper is concerned the determination of trajectories for the three-dimensional Navier-Stokes equations with nonlinear damping subject to periodic boundary condition. By using the energy estimate of Galerkin approximated equation, the finite number of determining modes and asymptotic determined functionals have been shown via the Grashof numbers for the non-autonomous and autonomous damped Navier-Stokes fluid flow respectively.



    加载中


    [1] A. M. Alghamdi, S. Gala, M. A. Ragusa, Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components, Siberian Electron. Math. Rep., 19 (2022), 309–315. https://doi.org/10.33048/semi.2022.19.025 doi: 10.33048/semi.2022.19.025
    [2] A. Choucha, S. Boulaaras, D. Ouchenane, Exponential decay and global existence of solutions of a singular nonlocal viscoelastic system with distributed delay and damping terms, Filomat, 35 (2021), 795–826. https://doi.org/10.2298/FIL2103795C doi: 10.2298/FIL2103795C
    [3] C. S. Dou, Z. S. Zhao, Analytical solution to 1D compressible Navier-Stokes equations, J. Funct. Spaces, 2021 (2021), 6339203. https://doi.org/10.1155/2021/6339203 doi: 10.1155/2021/6339203
    [4] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.
    [5] J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
    [6] J. C. Robinson, J. L. Rodrigo, W. Sadowski, The Three-Dimensional Navier-Stokes Equations, Cambridge University Press, Cambridge, 2016.
    [7] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Philadelphia, PA, 1995.
    [8] J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475–502. https://doi.org/10.1007/s003329900037 doi: 10.1007/s003329900037
    [9] A. Cheskidov, C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differ. Equations, 231 (2006), 714–754. https://doi.org/10.1016/j.jde.2006.08.021 doi: 10.1016/j.jde.2006.08.021
    [10] X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041
    [11] F. Li, B. You, Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 55–80. https://doi.org/10.3934/dcdsb.2019172 doi: 10.3934/dcdsb.2019172
    [12] F. Li, B. You, Y. Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4267–4284. https://doi.org/10.3934/dcdsb.2018137 doi: 10.3934/dcdsb.2018137
    [13] D. Pardo, J. Valero, Á. Giménez, Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3569–3590. https://doi.org/10.3934/dcdsb.2018279 doi: 10.3934/dcdsb.2018279
    [14] X. L. Song, Y. R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239–252. https://doi.org/10.3934/dcds.2011.31.239 doi: 10.3934/dcds.2011.31.239
    [15] C. Foias, O. P. Manley, R. Temam, Y. M. Trève, Asymptotic analysis of the Navier-Stokes equations, Physica D, 9 (1983), 157–188. https://doi.org/10.1016/0167-2789(83)90297-X doi: 10.1016/0167-2789(83)90297-X
    [16] D. A. Jones, E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 875–887. https://doi.org/10.1512/iumj.1993.42.42039 doi: 10.1512/iumj.1993.42.42039
    [17] P. Constantin, P. Foias, R. Temam, On the dimension of the attractors in two-dimensional turbulence, Physica D, 30 (1988), 284–296. https://doi.org/10.1016/0167-2789(88)90022-X doi: 10.1016/0167-2789(88)90022-X
    [18] R. Selmi, A. Châabani, Well-posedness, stability and determining modes to 3D Burgers equation in Gevrey class, Z. Angew. Math. Phys., 71 (2020), 162. https://doi.org/10.1007/s00033-020-01389-3 doi: 10.1007/s00033-020-01389-3
    [19] J. C. Kuang, Applied Inequalities (Changyong Budengshi), 2$^{\text{nd}}$ edition, Hunan Education Publishing House, 1993.
    [20] B. L. Guo, P. C. Zhu, Partial regularity of suitable weak solutions to the system of the incompressible Non-Newtonian fluids, J. Differ. Equations, 178 (2002), 281–297. https://doi.org/10.1006/jdeq.2000.3958 doi: 10.1006/jdeq.2000.3958
    [21] V. Kalantarov, A. Kostianko, S. Zelik, Determining functionals and finite-dimensional reduction for dissipative PDEs revisited, preprint, arXiv: 2111.04125.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1458) PDF downloads(99) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog