This paper concerns energy conservation for weak solutions of compressible Navier-Stokes-Maxwell equations. For the energy equality to hold, we provide sufficient conditions on the regularity of weak solutions, even for solutions that may include exist near-vacuum or on a boundary. Our energy conservation result generalizes/extends previous works on compressible Navier-Stokes equations and an incompressible Navier-Stokes-Maxwell system.
Citation: Jie Zhang, Gaoli Huang, Fan Wu. Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations[J]. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324
This paper concerns energy conservation for weak solutions of compressible Navier-Stokes-Maxwell equations. For the energy equality to hold, we provide sufficient conditions on the regularity of weak solutions, even for solutions that may include exist near-vacuum or on a boundary. Our energy conservation result generalizes/extends previous works on compressible Navier-Stokes equations and an incompressible Navier-Stokes-Maxwell system.
[1] | P. L. Lions, Mathematical Topics in Fluid Dynamics, Compressible models Oxford Science Publication, Oxford, 2 (1998). |
[2] | E. Feireisl, A. Novotný, H. Petzeltova, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358–392. https://doi.org/10.1007/PL00000976 doi: 10.1007/PL00000976 |
[3] | E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2003. https://doi.org/10.1093/acprof: oso/9780198528388.001.0001 |
[4] | E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser, Basel, 2009. https://doi.org/10.1007/978-3-7643-8843-0 |
[5] | C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073–1087. https://doi.org/10.1007/s00205-017-1121-4 doi: 10.1007/s00205-017-1121-4 |
[6] | Q. H. Nguyen, P. T. Nguyen, B. Q. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206–4231. https://doi.org/10.1088/1361-6544/ab28ae doi: 10.1088/1361-6544/ab28ae |
[7] | Z. Liang, Regularity criterion on the energy conservation for the compressible Navier-Stokes equations, in Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 151 (2021), 1954–1971. https://doi.org/10.1017/prm.2020.87 |
[8] | Y. Ye, Y. Wang, W. Wei, Energy equality in the isentropic compressible Navier-Stokes equations allowing vacuum, J. Differ. Equations, 338 (2022), 551–571. https://doi.org/10.1016/j.jde.2022.08.013 doi: 10.1016/j.jde.2022.08.013 |
[9] | D. Ma, F. Wu, Shinbrot's energy conservation criterion for the 3D Navier-Stokes-Maxwell system, C.R. Math., 361 (2023), 91–96. https://doi.org/10.5802/crmath.379 doi: 10.5802/crmath.379 |
[10] | F. Wu, On the Energy equality for distributional solutions to Navier-Stokes-Maxwell system, J. Math. Fluid Mech., 24 (2022), 111. https://doi.org/10.1007/s00021-022-00740-0 doi: 10.1007/s00021-022-00740-0 |
[11] | P. L. Lions, Mathematical topics in fluid mechanics, Incompressible Models, in Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, 1 (1996). |
[12] | I. Lacroix-Violet, A. Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191–210. https://doi.org/10.1016/j.matpur.2017.12.002 doi: 10.1016/j.matpur.2017.12.002 |
[13] | J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Ann. Mat. Pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360 |