Loading [MathJax]/jax/output/SVG/jax.js
Special Issues

Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities

  • In this paper, the Cauchy problem of the 3D compressible Navier-Stokes equations with degenerate viscosities and far field vacuum is considered. We prove that the L norm of the deformation tensor D(u) (u: the velocity of fluids) and the L6 norm of logρ (ρ: the mass density) control the possible blow-up of regular solutions. This conclusion means that if a solution with far field vacuum to the Cauchy problem of the compressible Navier-Stokes equations with degenerate viscosities is initially regular and loses its regularity at some later time, then the formation of singularity must be caused by losing the bound of D(u) or logρ as the critical time approaches; equivalently, if both D(u) and logρ remain bounded, a regular solution persists.

    Citation: Yue Cao. Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities[J]. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003

    Related Papers:

    [1] Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003
    [2] Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324
    [3] Jianxia He, Qingyan Li . On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum. Electronic Research Archive, 2024, 32(9): 5451-5477. doi: 10.3934/era.2024253
    [4] Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199
    [5] Guochun Wu, Han Wang, Yinghui Zhang . Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, 2021, 29(6): 3889-3908. doi: 10.3934/era.2021067
    [6] Jie Qi, Weike Wang . Global solutions to the Cauchy problem of BNSP equations in some classes of large data. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255
    [7] Hui Yang, Futao Ma, Wenjie Gao, Yuzhu Han . Blow-up properties of solutions to a class of $ p $-Kirchhoff evolution equations. Electronic Research Archive, 2022, 30(7): 2663-2680. doi: 10.3934/era.2022136
    [8] Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064
    [9] José Luis Díaz Palencia, Saeed Ur Rahman, Saman Hanif . Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium. Electronic Research Archive, 2022, 30(11): 3949-3976. doi: 10.3934/era.2022201
    [10] Zhonghua Qiao, Xuguang Yang . A multiple-relaxation-time lattice Boltzmann method with Beam-Warming scheme for a coupled chemotaxis-fluid model. Electronic Research Archive, 2020, 28(3): 1207-1225. doi: 10.3934/era.2020066
  • In this paper, the Cauchy problem of the 3D compressible Navier-Stokes equations with degenerate viscosities and far field vacuum is considered. We prove that the L norm of the deformation tensor D(u) (u: the velocity of fluids) and the L6 norm of logρ (ρ: the mass density) control the possible blow-up of regular solutions. This conclusion means that if a solution with far field vacuum to the Cauchy problem of the compressible Navier-Stokes equations with degenerate viscosities is initially regular and loses its regularity at some later time, then the formation of singularity must be caused by losing the bound of D(u) or logρ as the critical time approaches; equivalently, if both D(u) and logρ remain bounded, a regular solution persists.



    We consider the compressible isentropic Navier-Stokes equations with degenerate viscosities in R3, which gives the conservation laws of mass and momentum of fluids. This model comes from the Boltzmann equations through the Chapman-Enskog expansion to the second order, and the viscosities depend on the density ρ0 by the laws of Boyle and Gay-Lussac for ideal gas. This system can be written as

    {ρt+div(ρu)=0,(ρu)t+div(ρuu)+P=divT, (1)

    where xR3 is the spatial coordinate; t0 is the time; ρ is the density of the fluid; u=(u(1),u(2),u(3))R3 is the velocity of the fluid; P is the pressure, and for the polytropic fluid

    P=Aργ,γ>1, (2)

    where A is a positive constant, γ is the adiabatic index; T is the stress tensor given by

    T=μ(ρ)(u+(u))+λ(ρ)divuI3, (3)

    where I3 is the 3×3 unit matrix, μ(ρ) is the shear viscosity, λ(ρ) is the second viscosity, and

    μ(ρ)=αρ,λ(ρ)=βρ, (4)

    where the constants α and β satisfy

    α>0,2α+3β0.

    Here, the initial data are given by

    (ρ,u)|t=0=(ρ0,u0)(x),xR3, (5)

    and the far field behavior is given by

    (ρ,u)(0,0)as |x|,t0. (6)

    The aim of this paper is to prove a blow-up criterion for the regular solution to the Cauchy problem (1) with (5)-(6).

    Throughout the paper, we adopt the following simplified notations for the standard homogeneous and inhomogeneous Sobolev space:

    Dk,r={fL1loc(R3):|f|Dk,r=|kf|Lr<+},Dk=Dk,2(k2),D1={fL6(R3):|f|D1=|f|L2<},fXY=fX+fY,fs=fHs(R3),|f|p=fLp(R3),|f|Dk=fDk(R3).

    A detailed study of homogeneous Sobolev space can be found in [5].

    The compressible isentropic Navier-Stokes system is a well-known mathematical model, which has attracted great attention from the researchers, and some significant processes have been made in the well-posedness for this system.

    When (μ,λ) are both constants, with the assumption that there is no vacuum, the local existence of the classical solutions to system (1) follows from a standard Banach fixed point argument. For the existence results with vacuum and general data, the main breakthrough is due to Lions [16]. He established the global existence of weak solutions in R3, periodic domains or bounded domains, under the homogenous Dirichlet boundary conditions and the restriction γ>9/5. Later, the restriction on γ was improved to γ>3/2 by Feireisl-Novotný-Petzeltová [4]. Recently, Cho-Choe-Kim [2] introduced the following initial layer compatibility condition

    divT0+P(ρ0)=ρ0g

    for some gL2 to deal with the vacuum. They proved the local existence of the strong solutions in R3 or bounded domains with homogenous Dirichlet boundary conditions. Moreover, Huang-Li-Xin proved the global existence of the classical solutions to the Cauchy problem of the isentropic system with small energy and vacuum in [8].

    When (μ,λ) depend on density in the following form

    μ(ρ)=αρδ1,λ(ρ)=βρδ2, (7)

    where δ1>0, δ20, α>0 and β are all real constants, system (1) has received a lot of attention. However, except for the 1D problems, there are few results on the strong solutions for the multi-dimensional problems, since the possible degeneracy of the Lamˊe operator caused by initial vacuum. This degeneracy gives rise to some difficulties in the regularity estimates because of the less regularizing effect of the viscosity on the solutions. Recently, Li-Pan-Zhu [11] have obtained the local existence of the classical solutions to system (1) in 2D space under

    δ1=1,δ2=0 or 1,α>0,α+β0, (8)

    and (6), where the vacuum cannot appear in any local point. They [12] also prove the same existence result in 3D space under

    (ρ,u)(ˉρ,0)as|x|, (9)

    with initial vacuum appearing in some open set or the far field, the constant ˉρ0 and

    1<δ1=δ2min(3,γ+12),α>0,α+β0. (10)

    We also refer readers to [3], [6], [10], [13], [18], [26] and references therein for other interesting progress for this compressible degenerate system, corresponding radiation hydrodynamic equations and magnetohydrodynamic equations.

    It should be noted that one should not always expect the global existence of solutions with better regularities or general initial data because of Xin's results [23] and Rozanova's results [20]. It was proved that there is no global smooth solutions to (1), if the initial density has nontrivial compact support (1D) or the solutions are highly decreasing at infinity(dD, d1). These motivate us to find the blow-up mechanisms and singularity structures of the solutions.

    For constant viscosity, Beale-Kato-Majda [1] first proved that the maximum norm of the vorticity controls the blow-up of the smooth solutions to 3D incompressible Euler equations

    limTTT0|curlu|dt=, (11)

    where T is the maximum existence time. Later, for the same problem, Ponce [19] proved that the maximum norm of the deformation tensor controls the blow-up of the smooth solutions

    limTTT0|D(u)|dt=, (12)

    where the deformation tensor D(u)=12(u+(u)). Huang-Li-Xin [7] proved that the criterion (12) holds for the strong solutions to the system (1). Sun-Wang-Zhang [22] proved that the upper bound of the density controls the blowup of the strong solution to the system (1). There are some other interesting results about infinite time blowup and finite time blowup results on the nonlinear wave equation with different initial energy levels, refer to [14], [15], [24] and references therein for detailed study.

    When the viscosities depend on density in the form of (4), S. Zhu [25] introduced the regular solutions, which can be defined as

    Definition 1.1. [25] Let T>0 be a finite constant, (ρ,u) is called a regular solution to the Cauchy problem (1) with (5)-(6) on [0,T]×R3 if (ρ,u) satisfies

    (A)(ρ,u)  in [0,T]×R3  satisfies the Cauchy problem (1)with (5)(6)in the sense of distributions;(B)ρ0,ργ12C([0,T];H2), (ργ12)tC([0,T];H1);(C)logρC([0,T];D1), (logρ)tC([0,T];L2);(D)uC([0,T];H2)L2([0,T];D3), utC([0,T];L2)L2([0,T];D1).

    The local existence of the regular solutions has been obtained by Zhu [25].

    Theorem 1.2. [25] Let 1<γ2 or γ=3. If the initial data (ρ0,u0) satisfies the regularity conditions

    ργ1200,(ργ120,u0)H2,logρ0D1, (13)

    then there exist a small time T and a unique regular solution (ρ,u) to the Cauchy problem (1) with (5)-(6). Moreover, we also have ρ(t,x)C([0,T]×R3) and

    ρC([0,T];H2),ρtC([0,T];H1).

    Based on Theorem 1.2, we establish the blow-up criterion for the regular solution in terms of logρ and the deformation tensor D(u), which is similar to the Beale-Kato-Majda criterion for the ideal incompressible Euler equations and the compressible Navier-Stokes equations.

    Theorem 1.3. Let (ρ,u) be a regular solution obtained in Theorem 1.2. Then if ¯T<+ is the maximal existence time, one has both

    limT¯T(sup0tT|logρ|6+T0|D(u)| dt)=+, (14)

    and

    limsupT¯TT0D(u)LD1,6 dt=+. (15)

    The rest of the paper can be organized as follows. In Section 2, we will give the proof for the criterion (14). Section 3 is an appendix which will present some important lemmas which are frequently used in our proof, and also give the detail derivation for the desired system used in our following proof.

    In this section, we give the proof for Theorem 1.3. We use a contradiction argument to prove (14), let (ρ,u) be the unique regular solution to the Cauchy problem (1) with (5)-(6) and the maximal existence time ¯T. We assume that ¯T<+ and

    limT¯T(sup0tT|logρ|6+T0|D(u)|dt)=C0<+ (16)

    for some constant 0<C0<. If we prove that under assumption (16), ¯T is actually not the maximal existence time for the regular solution, there will be a contradiction, thus (14) holds.

    Notice that, one can also prove (15) by contradiction argument. Assume that

    limsupT¯TT0D(u)LD1,6 dt=C0<+ (17)

    for some constant 0<C0<. Combing (17) with the mass equation, we know that

    limT¯Tsup0tT|logρ|6CC0,

    which implies that under assumption (17), we have (16). Thus, if we prove that (14) holds, then (15) holds immediately.

    In the rest part of this section, based on the assumption (16), we will prove that ˉT is not the maximal existence time for the regular solution.

    From the definition of the regular solution, we know for

    ϕ=ργ12,ψ=2γ1logϕ, (18)

    (ϕ,ψ,u) satisfies

    {ϕt+uϕ+γ12ϕdivu=0,ψt+(uψ)+divu=0,ut+uu+2θϕϕ+Lu=ψQ(u), (19)

    where L is the so-called Lamˊe operator given by

    Lu=div(α(u+(u))+βdivuI3), (20)

    and terms (Q(u),θ) are given by

    Q(u)=α(u+(u))+βdivuI3,θ=Aγγ1. (21)

    See our appendix for the detailed process of the reformulation.

    For (19)2, we have the equivalent form

    ψt+3l=1Allψ+Bψ+divu=0. (22)

    Here Al=(a(l)ij)3×3 (i,j,l=1,2,3) are symmetric with a(l)ij=u(l) when i=j; and a(l)ij=0, otherwise. B=(u), so (22) is a positive symmetric hyperbolic system. By direct computation, one knows

    ψ=2γ1ϕϕ=2γ1ργ12ργ12=ρρ=logρ, (23)

    combing this with (16), one has ψL([0,T];L6).

    Under (16) and (19), we first show that the density ρ is uniformly bounded.

    Lemma 2.1. Let (ρ,u) be the unique regular solution to the Cauchy problem (1) with (5)-(6) on [0,¯T)×R3 satisfying (16). Then

    ρL([0,T]×R3)+ϕL([0,T];Lq)C,0T<¯T,

    where C>0 depends on C0, constant q[2,+] and ¯T.

    Proof. First, it is obvious that ϕ can be represented by

    ϕ(t,x)=ϕ0(W(0,t,x))exp(γ12t0divu(s,W(s,t,x))ds), (24)

    where WC1([0,T]×[0,T]×R3) is the solution to the initial value problem

    {ddtW(t,s,x)=u(t,W(t,s,x)),0tT,W(s,s,x)=x, 0sT, xR3.

    Then it is clear that

    ϕL([0,T]×R3)|ϕ0|exp(CC0)C. (25)

    Similarly,

    ρL([0,T]×R3)C. (26)

    Next, multiplying (19)1 by 2ϕ and integrating over R3, we get

    ddt|ϕ|22C|divu||ϕ|22, (27)

    from (16), (27) and the Gronwall's inequality, we immediately obtain

    ϕL([0,T];L2)C. (28)

    Combing (25)-(28) together, one has

    ϕL([0,T];Lq)C,q[2,+].

    We complete the proof of this lemma.

    Before go further, notice that

    |ϕ|6=|ϕlogϕ|6=2γ1|ϕlogρ|6C|ϕ||logρ|6C, (29)

    where we have used (16) and Lemma 2.1. Next, we give the basic energy estimates on u.

    Lemma 2.2. Let (ρ,u) be the unique regular solution to the Cauchy problem (1) with (5)-(6) on [0,¯T)×R3 satisfying (16). Then

    sup0tT|u(t)|22+T0|u(t)|22dtC,0T<¯T,

    where C only depends on C0 and ¯T.

    Proof. Multiplying (19)3 by 2u and integrating over R3, we have

    ddt|u|22+2R3(α|u|2+(α+β)(divu)2)dx=R32(uuuθϕ2u+ψQ(u)u)dx:L1+L2+L3. (30)

    The right-hand side terms can be estimated as follows.

    L1=R32uuudxC|divu||u|22,L2=2R3θϕ2divudxC|ϕ|22|divu|C|divu|,L3=R32ψQ(u)udxC|ψ|6|u|2|u|3C|u|2|u|122|u|122α2|u|22+C|u|2|u|2α|u|22+C|u|22, (31)

    where we have used (16), (23) and the facts

    |u|3C|u|122|u|122. (32)

    Thus (30) and (31) yield

    ddt|u|22+α|u|22C(|divu|+1)|u|22+C|divu|. (33)

    By the Gronwall's inequality, (16) and (33), we have

    |u(t)|22+t0|u(s)|22dsC,0tT. (34)

    This completes the proof of this lemma.

    The next lemma provides the key estimates on ϕ and u.

    Lemma 2.3. Let (ρ,u) be the unique regular solution to the Cauchy problem (1) with (5)-(6) on [0,¯T)×R3 satisfying (16). Then

    sup0tT(|u(t)|22+|ϕ(t)|22)+T0(|2u|22+|ut|22)dtC,0T<¯T,

    where C only depends on C0 and ¯T.

    Proof. Multiplying (19)3 by Luθϕ2 and integrating over R3, we have

    12ddtR3(α|u|2+(α+β)|divu|2)dx+R3(Luθϕ2)2 dx=αR3(uu)×curlu dx+R3(2α+β)(uu)divu dx+θR3(ψQ(u))ϕ2dxθR3(uu)ϕ2 dx+R3(ψQ(u))Lu dxθR3utϕ2 dx≡:9i=4Li, (35)

    where we have used the fact that

    u+divu=curl(curlu)=×curlu.

    First, from the standard elliptic estimate shown in Lemma 3.3, we have

    |2u|22C|θϕ2|22C|div(α(u+(u))+βdivuI3)|22C|θϕ2|22C|div(α(u+(u))+βdivuI3)θϕ2|22=CR3(Luθϕ2)2dx. (36)

    Second, we estimate the right-hand side of (35) term by term. According to

    {u×curlu=12(|u|2)uu,×(a×b)=(b)a(a)b+(divb)a(diva)b,

    Hölder's inequality, Young's inequality, (16), (23), (29), Lemma 2.2, Lemma 3.1 and (19)1, one can obtain that

    |L4|=α|R3(u)u×curlu dx|=α|R3(curlu×((u)u))dx|=α|R3(curlu×(u×curlu))dx|=α|R3(12|curlu|2divucurluD(u)curlu)dx|C|u||u|22,|L5|=|R3(2α+β)(u)udivu dx||R3(2α+β)(u:udivu+12(divu)3)dx|+C|ϕ|6|u|3|u|2|divu|C(|u|22|divu|+|u|122|u|122|u|2|divu|)C(|u|22+|u|2|u|2)|divu|C|divu|(|u|22+1),L6=θR3(ψQ(u))ϕ2 dxC|ψ|6|u|3|ϕ2|2C|u|122|2u|122|ϕ|2|ϕ|C|ϕ|22+C(ϵ)|u|22+ϵ|2u|22,|L7|=θ|R3(uu)ϕ2dx|=θ|R3u:(u)ϕ2dxR3ϕ2u(divu)dx| (37)
    =θ|R3u:(u)ϕ2dx+R3(divu)2ϕ2dx+R2uϕ2divu dx|C(|u|22|ϕ2|+|u|2|ϕ|2|ϕ||divu|)C(|u|22+|divu||ϕ|2)C(|u|22+|divu|+|divu||ϕ|22),L8=R3(ψQ(u))Lu dxC|ψ|6|u|3|2u|2C|2u|322|u|122C(ϵ)|u|22+ϵ|2u|22,L9=θR3utϕ2dx=θR3ϕ2divut dx=θddtR3ϕ2divu dxθR3(ϕ2)tdivu dx=θddtR3ϕ2divu dxθR32ϕϕtdivu dx=θddtR3ϕ2divu dx+θR3uϕ2divu dx+θ(γ1)R3ϕ2(divu)2dxθddtR3ϕ2divu dx+C(|u|2|ϕ|2|ϕ||divu|+|u|22|ϕ2|)θddtR3ϕ2divu dx+C(|ϕ|2|divu|+|u|22)θddtR3ϕ2divu dx+C(|u|22+|divu|+|divu||ϕ|22), (38)

    where ϵ>0 is a sufficiently small constant. Thus (35)-(38) imply

    12ddtR3(α|u|2+(α+β)|divu|22θϕ2divu)dx+C|2u|22C((|u|22+|ϕ|22)(|divu|+1)+|divu|). (39)

    Third, applying to (19)1 and multiplying by (ϕ), we have

    (|ϕ|2)t+div(|ϕ|2u)+(γ2)|ϕ|2divu=2(ϕ)u(ϕ)(γ1)ϕϕdivu=2(ϕ)D(u)(ϕ)(γ1)ϕϕdivu. (40)

    Integrating (40) over R3, we get

    ddt|ϕ|22C(ϵ)(|D(u)|+1)|ϕ|22+ϵ|2u|22. (41)

    Adding (41) to (39), from the Gronwall's inequality and (16), we immediately obtain

    α|u(t)|222θR3ϕ2divu dx+C|ϕ(t)|22+t0|2u(s)|22dsC,

    that is

    α|u(t)|22+C|ϕ(t)|22+t0|2u(s)|22dsC+2θR3ϕ2divu dxC(1+|u|2|ϕ|2|ϕ|)C+α4|u(t)|22,

    which implies

    |u(t)|22+|ϕ(t)|22+t0|2u(s)|22dsC,0tT.

    Finally, due to ut=Luuu2θϕϕ+ψQ(u), we deduce that

    t0|ut|22dsCt0(|2u|22+|u|23|u|26+|ϕ|2|ϕ|22+|u|23|ψ|26)dsC.

    Thus we complete the proof of this lemma.

    Next, we proceed to improve the regularity of ϕ, ψ and u. First, we start with the estimates on the velocity.

    Lemma 2.4. Let (ρ,u) be the unique regular solution to the Cauchy problem (1) with (5)-(6) on [0,¯T)×R3 satisfying (16). Then

    sup0tT(|ut(t)|22+|u(t)|D2)+T0|ut|22dtC,0T<¯T, (42)

    where C only depends on C0 and ¯T.

    Proof. From the standard elliptic estimate shown in Lemma 3.3 and

    Lu=utuu2θϕϕ+ψQ(u), (43)

    one has

    |u|D2C(|ut|2+|uu|2+|ϕϕ|2+|ψQ(u)|2)C(|ut|2+|u|6|u|3+|ϕ|3|ϕ|6+|ψ|6|u|3)C(1+|ut|2+|u|6|u|122|2u|122+|u|122|2u|122)C(1+|ut|2+|2u|122)C(1+|ut|2)+12|u|D2, (44)

    where we have used Sobolev inequalities, (16), (23), (29) and Lemmas 2.1-2.3. Then we immediately obtain that

    |u|D2C(1+|ut|2). (45)

    Next, differentiating (19)3 with respect to t, it reads

    utt+Lut=(uu)t2θ(ϕϕ)t+(ψQ(u))t. (46)

    Multiplying (46) by ut and integrating over R3, one has

    12ddt|ut|22+α|ut|2212ddt|ut|22+R3(α|ut|2+(α+β)|divut|2)dx=R3((uu)tut+(ψQ(u))tut2θ(ϕϕ)tut)dx:12i=10Li. (47)

    Similarly, based on (16), (23), (29) and Lemmas 2.1-2.3, we estimate the right-hand side of (47) term by term as follows.

    L10=R3(uu)tut dx=R3((utu)ut+(uut)ut)dx=R3(utD(u)ut12(ut)2divu)dxC|D(u)||ut|22,L11=R3(ψQ(u))tut dx=R3ψQ(u)tut dx+R3ψtQ(u)ut dx=R3ψQ(u)tut dxR3divuQ(u)ut dx+R3uψdiv(Q(u)ut)dxC(|ψ|6|ut|2|ut|3+|2u|2|Q(u)||ut|2+|ψ|6|u|6|2u|2|ut|6+|ψ|6|u|6|Q(u)|6|ut|2)C(|ut|2|ut|122|ut|122+|2u|2|Q(u)||ut|2+|u|6|ut|2+|2u|2|ut|2)α8|ut|22+C(1+|D(u)|)(|ut|22+|u|2D2),L12=R32θ(ϕϕ)tut dx=θR3(ϕ2)tdivutdx=2θR3ϕϕtdivutdx=2θR3ϕ(uϕ+γ12ϕdivu)divutdx=θR3(uϕ2+(γ1)ϕ2divu)divutdx (48)
    =θ(γ1)2R3ϕ2(divu)2tdxθR3uϕ2divutdx=θ(γ1)2ddtR3ϕ2(divu)2dx+θ(γ1)R3uϕϕt(divu)2dxθR3uϕ2divutdx=θ(γ1)2ddtR3ϕ2(divu)2dxθ(γ1)R3uϕ(uϕ)(divu)2dxθ(γ1)22R3uϕ2(divu)3dxθR3uϕ2divutdx=θ(γ1)2ddtR3ϕ2(divu)2dx+θ(γ1)2R3uϕ2(divu)2dx+θ(γ1)(3γ)2R3ϕ2(divu)3dxθR3uϕ2divutdxθ(γ1)2ddtR3ϕ2(divu)2dx+C(|u||ϕ|2|u|2|2u|2+|ϕ|2|D(u)||u|22+|ϕ||ϕ|2|u||ut|2)θ(γ1)2ddtR3ϕ2(divu)2dx+C(|u|||2u|2+|D(u)|+|u||ut|2) (49)
    θ(γ1)2ddtR3ϕ2(divu)2dx+α4|ut|22+C(1+|D(u)|+|u|2D2), (50)

    where we also used Hölder's inequality, Young's inequality and

    |u|C|u|W1,3C(|u|122|u|122+|u|12|2u|12). (51)

    It is clear from (47)-(50) and (45) that

    ddt(|ut|22+|ϕdivu|22)+|ut|22C(1+|2u|2+|D(u)|)|ut|22. (52)

    Integrating (52) over (τ,t) (τ(0,t)), we have

    |ut(t)|22+|ϕdivu(t)|22+tτ|ut(s)|22ds|ut(τ)|22+|ϕdivu(τ)|22+Ctτ((1+|2u|2+|D(u)|)|ut|22)(s)ds. (53)

    From the momentum equations (19)3, we obtain

    |ut(τ)|2C(|uu|2+|ϕϕ|2+|Lu|2+|ψQ(u)|2)(τ)C(|u||u|2+|ϕ||ϕ|2+|u|D2+|ψ|6|u|3)(τ), (54)

    which, together with the definition of regular solution, gives

    limsupτ0|ut(τ)|2C(|u0||u0|2+|ϕ0||ϕ0|2+|u0|D2+|ψ0|6|u0|3)C0. (55)

    Letting τ0 in (53), applying the Gronwall's inequality, (16) and Lemma 2.3, we arrive at

    |ut(t)|22+|u(t)|2D2+t0|ut(s)|22dsC,0tT. (56)

    This completes the proof of this lemma.

    The following lemma gives bounds of ϕ and 2u.

    Lemma 2.5. Let (ρ,u) be the unique regular solution to the Cauchy problem (1) with (5)-(6) on [0,¯T)×R3 satisfying (16). Then

    sup0tT(ϕ(t)W1,6+|ϕt(t)|6)+T0|u(t)|2D2,6dtC,0T<¯T, (57)

    where C only depends on C0 and ¯T.

    Proof. First, taking q=6 in Lemma 2.1, combing with (29) we have

    sup0tTϕ(t)W1,6C,0T<¯T.

    Second, one has

    |ϕt|6=|uϕ+γ12ϕdivu|6C(|ϕ|6|u|+|ϕ||divu|6)C, (58)

    where we have used Lemmas 2.3-2.4 and (29).

    Third, according to

    Lu=utuu2θϕϕ+ψQ(u), (59)

    and the standard elliptic estimate shown in Lemma 3.3, one has

    |2u|6C(|ut|6+|uu|6+|ϕϕ|6+|ψQ(u)|6)C(|ut|2+|u||u|6+|ϕ||ϕ|6+|ψ|6|Q(u)|)C(1+|ut|2+|D(u)|142|D(u)|346)C(1+|ut|2+|2u|346)C(1+|ut|2)+12|2u|6, (60)

    where we have used (16), (23), (29), Lemmas 2.1-2.4 and

    |divu|C|D(u)|,|D(u)|C|D(u)|142|D(u)|346. (61)

    Thus, (60) implies that

    |2u|6C(1+|ut|2). (62)

    Combing (62) with Lemma 2.4, one has

    t0|u(s)|2D2,6dsCt0(1+|ut(s)|22)dsC,0tT. (63)

    The proof of this lemma is completed.

    Lemma 2.5 implies that

    t0|u(,s)|dsC, (64)

    for any t[0,¯T) with C>0 a finite number. Noting that (19) is essentially a parabolic-hyperbolic system, it is then standard to derive other higher order estimates for the regularity of the regular solutions. We will show this fact in the following lemma.

    Lemma 2.6. Let (ρ,u) be the unique regular solution to the Cauchy problem (1) with (5)-(6) on [0,¯T)×R3 satisfying (16). Then

    sup0tT(|ϕ(t)|2D2+|ψ(t)|2D1+ϕt(t)21+|ψt(t)|22)+T0(|u(t)|2D3+|ϕtt(t)|22)dtC,0T<¯T,

    where C only depends on C0 and ¯T.

    Proof. From (19)3 and Lemma 3.3, we have

    |u|D3C(|ut|D1+|uu|D1+|ϕϕ|D1+|ψQ(u)|D1)C(|ut|D1+|u||2u|2+|u|6|u|3+|ψ|6|2u|3+|ϕ|6|ϕ|3+|ϕ||2ϕ|2+|ψ|2|D(u)|)C(1+|ut|D1+|ϕ|D2+|u|12D3+|ψ|D1|D(u)|)C(1+|ut|D1+|ϕ|D2+|ψ|D1|D(u)|)+12|u|D3, (65)

    where we have used Young's inequality, Lemma 2.5, (16), (23), (29) and (61). Thus (65) offers that

    |u|D3C(1+|ut|D1+|ϕ|D2+|D(u)||ψ|D1). (66)

    Next, applying i (i=1,2,3) to (19)2 with respect to x, we obtain

    (iψ)t+3l=1Alliψ+Biψ+idivu=(i(Bψ)+Biψ)+3l=1(i(Al)lψ). (67)

    Multiplying (67) by 2(iψ), integrating over R3, and then summing over i, noting that Al (l=1,2,3) are symmetric, it is not difficult to show that

    ddt|ψ|22CR3(|divA||ψ|2+|3u||ψ|+|ψ|2|u|+|i(Bψ)Biψ||ψ|)dxC(|divA||ψ|22+|3u|2|ψ|2+|ψ|22|u|+|i(Bψ)Biψ|2|ψ|2), (68)

    where divA=3l=1lAl. When |ζ|=1, choosing r=2, a=3, b=6 in (83), we have

    |i(Bψ)Biψ|2=|Dζ(Bψ)BDζψ|2C|2u|3|ψ|6C|2u|122|3u|122C|3u|122. (69)

    Thus

    ddt|ψ|22C(|u||ψ|22+|3u|2|ψ|2+|3u|122|ψ|2). (70)

    Combining (70) with (66) and Lemma 3.1, we have

    ddt|ψ|2D1C(1+|u|)|ψ|2D1+C(1+|3u|2)|ψ|D1C(1+|u|)|ψ|2D1+C(1+|ϕ|2D2+|ut|22). (71)

    On the other hand, let ϕ=G=(G(1),G(2),G(3)). Applying 2 to (19)1, we have

    0=(G)t+(uG)+(Gu)+γ12(Gdivu+ϕdivu), (72)

    similarly to the previous step, we multiply (72) by 2G and integrate it over R3 to derive

    ddt|G|2D1CR3(|2u||G|+|u||G|+|ϕ||2u|+|ϕ||3u|)|G|dxC(|G|6|2u|3+|u||G|2+|ϕ||3u|2)|G|2C(|2u|122|3u|122+|u||G|D1+|u|D3)|G|D1C(|u|12D3+|u|D3)|G|D1+C|u||G|2D1C(1+|u|D3)|G|D1+C|u||G|2D1C(1+|ut|D1+|ϕ|D2+|D(u)||ψ|2)|G|D1+C|u||G|2D1C(1+|ut|D1+|u||ψ|D1)|G|D1+C(1+|u|)|G|2D1C(1+|u|)(|G|2D1+|ψ|2D1)+C(1+|ut|22), (73)

    where we have used the Young's inequality, (29) and (66). This estimate, together with (71), gives that

    ddt(|G|2D1+|ψ|2D1)C(1+|u|)(|G|2D1+|ψ|2D1)+C(1+|ut|22). (74)

    Then the Gronwall's inequality, (42), (64) and (74) imply

    |ϕ(t)|2D2+|ψ(t)|2D1C,0tT. (75)

    Combing (75) with (66) and Lemma 2.4, one has

    t0|u(s)|2D3dsCt0(1+|ut(s)|22)dsC,0tT. (76)

    Finally, using the following relations

    ψt=(uψ)divu,   ϕt=uϕγ12ϕdivu,ϕtt=utϕuϕtγ12ϕtdivuγ12ϕdivut, (77)

    according to Hölder's inequality, (16), (29), Lemmas 2.1-2.5, one has

    |ψt|2C(|uψ|2+|uψ|2+|divu|2)C(|u|3|ψ|6+|u||ψ|2+|2u|2)C,|ϕt|2C(|uϕ|2+|ϕdivu|2)C(|u||ϕ|2+|ϕ||u|2)C,|ϕt|2C(|(uϕ)|2+|(ϕdivu)|2)C(|uϕ|2+|2ϕu|2+|ϕdivu|2+|ϕdivu|2)C(|u|3|ϕ|6+|u||2ϕ|2+|ϕ|6|u|3+|ϕ||2u|2)C,|ϕtt|2C(|utϕ|2+|uϕt|2+|ϕtdivu|2+|ϕdivut|2)C(|ut|6|ϕ|3+|u||ϕt|2+|ϕt|6|u|3+|ϕ||ut|2)C(1+|ut|2). (78)

    Thus

    sup0tT(ϕt(t)21+|ψt(t)|22)C,

    and according to (42), one has

    T0|ϕtt(t)|22dtT0(1+|ut(t)|22)dtC.

    The proof of this lemma is completed.

    Now we know from Lemmas 2.1-2.6 that, if the regular solution (ρ,u)(x,t) exists up to the time ¯T>0, with the maximal time ¯T<+ such that the assumption (16) holds, then

    (ργ12,logρ,u)|t=¯T=limt¯T(ργ12,logρ,u)

    satisfies the conditions imposed on the initial data (13). If we solve the system (1) with the initial time ¯T, then Theorem 1.1 ensures that (ρ,u)(x,t) extends beyond ¯T as the unique regular solution. This contradicts to the fact that ¯T is the maximal existence time. We thus complete the proof of Theorem 1.3.

    In this subsection, we present some important lemmas which are frequently used in our previous proof. The first one is the well-known Gagliardo-Nirenberg inequality, which can be found in [9].

    Lemma 3.1. [9] Let r(1,+) and  hW1,p(R3)Lr(R3). Then the following inequality holds for some constant C(c,p,r)

    |h|qC|h|cp|h|1cr, (79)

    where

    c=(1r1q)(1r1p+13)1,0c1. (80)

    If p<3, then q[r,3p3p] when r<3p3p; and q[3p3p,r] when r3p3p. If p=3, then q[r,+). If p>3, then q[r,+].

    Some common versions of this inequality can be written as

    |f|3C|f|122|f|122,|f|6C|f|2,|f|C|f|142|f|346, (81)

    which have be used frequently in our previous proof.

    The second one can be found in Majda [17], and we omit its proof.

    Lemma 3.2. [17] Let positive constants r, a and b satisfy the relation

    1r=1a+1b

    and 1a, b, r+. s1, if f,gWs,a(R3)Ws,b(R3), then we have

    |Ds(fg)fDsg|rCs(|f|a|Ds1g|b+|Dsf|b|g|a), (82)
    |Ds(fg)fDsg|rCs(|f|a|Ds1g|b+|Dsf|a|g|b), (83)

    where Cs>0 is a constant depending only on s, and sf means that the set of all elements of ζf with |ζ|=s.

    The third one is on the regularity estimates for Lamˊe operator. For the elliptic problem

    {αΔu(α+β)divu=f,u0as |x|+, (84)

    one has

    Lemma 3.3. [21] If uDk,q with 1<q<+ is a weak solution to the problem (84), then

    |u|Dk+2,qC|f|Dk,q, (85)

    where k is an integer and the constant C>0 depend on α,β and q. Moreover, if uDk,q is a weak solution to the following problem

    Δu=f,u0as |x|+, (86)

    then (85) holds and if f=divg, we also have

    |u|D1,qC|g|Lq. (87)

    The proof can be obtained via the classical estimates from harmonic analysis, which can be found in [21] or [22]. We omit it here.

    Now we show that, via introducing new variables

    ϕ=ργ12,ψ=logρ=2γ1ϕ/ϕ, (88)

    the system (1) can be rewritten as

    {ϕt+γ12ϕdivu+uϕ=0,ψt+(uψ)+divu=0,ut+uu+2θϕϕ+Lu=ψQ(u). (89)

    Proof. First, from the momentum equation, one has

    ρut+ρuu+Pρdiv(α(u+u)+βdivuI3)=ρ[α(u+u)+βdivuI3],

    where P=Aργ, divide both side by ρ, one has

    ut+uu+Aγργ2ρdiv(α(u+u)+βdivuI3)=ρρ[α(u+u)+βdivuI3].

    Denote

    Lu=div(α(u+u)+βdivuI3),Q(u)=α(u+u)+βdivuI3,θ=Aγγ1,

    we have

    ut+uu+2θϕϕ+Lu=ψQ(u). (90)

    Second, for ψ=logρ, one has

    ψt=(logρ)t=(logρ)t=(ρtρ)=(div(ρu)ρ)=(ρuρdivuρ)=(logρu+divu)=divuu(logρ)logρu=divuuψψu=divu(uψ). (91)

    Third, for ϕ=ργ12, one has

    ϕt=(ργ12)t=γ12ργ32ρt=γ12ργ12ρtρ=γ12ργ12div(ρu)ρ=γ12ϕρdivuρuρ=γ12ϕdivuuϕ. (92)

    Combing (90)-(92) together, we complete the proof of the transformation.

    The author sincerely appreciates Dr. Shengguo Zhu for his very helpful suggestions and discussions on the problem solved in this paper. The research of Y. Cao was supported in part by China Scholarship Council 201806230126 and National Natural Science Foundation of China under Grants 11571232.

    Conflict of Interest: The authors declare that they have no conflict of interest.



    [1] Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. (1984) 94: 61-66.
    [2] Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pure. Appl. (2004) 83: 243-275.
    [3] Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with far field vacuum. J. Math. Pure. Appl. (2017) 107: 288-314.
    [4] On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. (2001) 3: 358-392.
    [5] G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-state problems. Second edition. Springer Monographs in Mathematics. Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9
    [6] Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with vacuum. Arch. Rational. Mech. Anal. (2019) 234: 727-775.
    [7] Blowup criterion for viscous barotropic flows with vacuum states. Commum. Math. Phys. (2011) 301: 23-35.
    [8] Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Commun. Pure. Appl. Math. (2012) 65: 549-585.
    [9] O. A. Ladyzenskaja and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI 1968.
    [10] Recent progress on classical solutions for compressible isentropic Navier-Stokes equations with degenerate viscosities and vacuum. Bulletin of the Brazilian Mathematical Society (2016) 47: 507-519.
    [11] On classical solutions to 2D shallow water equations with degenerate viscosities. J. Math. Fluid Mech. (2017) 19: 151-190.
    [12] On classical solutions for viscous polytropic fluids with degenerate viscosities and vacuum. Arch. Rational. Mech. Anal. (2019) 234: 1281-1334.
    [13] Existence results and blow-up criterion of compressible radiation hydrodynamic equations. J. Dyn. Differ. Equ. (2017) 29: 549-595.
    [14] Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. (2020) 9: 613-632.
    [15] W. Lian, V. D. Rǎdulescu, R. Xu, Y. Yang and N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Advances in Calculus of Variations, 2019. doi: 10.1515/acv-2019-0039
    [16] (1996) Mathematical Topics in Fluid Mechanics: Compressible Models. USA: Oxford University Press.
    [17] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci., vol. 53, Springer, New York, 1984. doi: 10.1007/978-1-4612-1116-7
    [18] N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Nonlinear Analysis-Theory and Methods, Springer Monographs in Mathematics. Springer, Berlin, 2019. doi: 10.1007/978-3-030-03430-6
    [19] Remarks on a paper: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. (1985) 98: 349-353.
    [20] Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equation. J. Differential Equations (2008) 245: 1762-1774.
    [21] (1970) Singular Integrals and Differentiability Properties of Functions. Princeton NJ: Princeton Univ. Press.
    [22] A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J. Math. Pure. Appl. (2011) 95: 36-47.
    [23] Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. (1998) 51: 229-240.
    [24] The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete and Continuous Dynamical Systems (2017) 37: 5631-5649.
    [25] Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum. J. Differential Equations (2015) 259: 84-119.
    [26] On classical solutions of the compressible magnetohydrodynamic equations with vacuum. SIAM J. Math. Anal. (2015) 47: 2722-2753.
  • This article has been cited by:

    1. Xiaoqiang Dai, Wenke Li, Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem, 2021, 29, 2688-1594, 4087, 10.3934/era.2021073
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3235) PDF downloads(450) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog