In this paper, we investigate the regularity criterion of weak solutions to three-dimensional magneto-micropolar fluid equations with fractional dissipation. A regularity criterion is established via the third component of the velocity fields, the micro-rotational velocity fields, and the magnetic fields.
Citation: Yazhou Wang, Yuzhu Wang. Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation[J]. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199
In this paper, we investigate the regularity criterion of weak solutions to three-dimensional magneto-micropolar fluid equations with fractional dissipation. A regularity criterion is established via the third component of the velocity fields, the micro-rotational velocity fields, and the magnetic fields.
[1] | J. Fan, X. Zhong, Regularity criteria for 3D generalized incompressible magneto-micropolar fluid equations, Appl. Math. Lett., 127 (2022), 107840. https://doi.org/10.1016/j.aml.2021.107840 doi: 10.1016/j.aml.2021.107840 |
[2] | H. Qiu, C. Xiao, Z. Yao, Local existence for the d-dimensional magneto-micropolar equations with fractional dissipation in Besov spaces, Math. Methods Appl. Sci., 46 (2023), 9617–9651. https://doi.org/10.1002/mma.9078 doi: 10.1002/mma.9078 |
[3] | B. Yuan, P. Zhang, Global well-posedness for the 3D magneto-micropolar equations with fractional dissipation, N. Z. J. Math., 51 (2021), 119–130. https://doi.org/10.53733/161 doi: 10.53733/161 |
[4] | J. Yan, Q. Xie, B. Dong, Global regularity of the 3D magneto-micropolar equations with fractional dissipation, Z. Angew. Math. Phys., 73 (2022), 1–15. https://doi.org/10.1007/s00033-021-01651-2 doi: 10.1007/s00033-021-01651-2 |
[5] | E. Ortega-Torres, M.Rojas-Medar, Magneto-micropolar fluid motion: global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109–125. https://doi.org/10.1155/S1085337599000287 doi: 10.1155/S1085337599000287 |
[6] | M. Rojas-Medar, Magneto-micropolar fluid motion: existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 307–319. https://doi.org/10.1002/mana.19971880116 doi: 10.1002/mana.19971880116 |
[7] | M. Rojas-Medar, J. Boldrini, Magneto-micropolar fluid motion: existence of weak solutions, Rev. Mat. Complutense, 11 (1998), 443–460. |
[8] | S. Gala, Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space, Nonlinear Differ. Equations Appl., 17 (2010), 181–194. https://doi.org/10.1007/s00030-009-0047-4 doi: 10.1007/s00030-009-0047-4 |
[9] | Z. Li, P. Niu, New regularity criteria for the 3D magneto-micropolar fluid equations in Lorentz spaces, Math. Methods Appl. Sci., 44 (2021), 6056–6066. https://doi.org/10.1002/mma.7170 doi: 10.1002/mma.7170 |
[10] | F. Xu, Regularity criterion of weak solution for the 3D magneto-micropolar fluid equations in Besov spaces, Commun. Nonlinear. Sci. Numer. Simul., 17 (2012), 2426–2433. http://doi.org/10.1016/j.cnsns.2011.09.038 doi: 10.1016/j.cnsns.2011.09.038 |
[11] | Z. Zhang, Z. Yao, X. Wang, A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces, Nonlinear Anal. Theory Methods Appl., 74 (2011), 2220–2225. https://doi.org/10.1016/J.NA.2010.11.026 doi: 10.1016/J.NA.2010.11.026 |
[12] | F. Xu, X. Xu, J. Yuan, Logarithmically improved regularity criteria for the micropolar fluid equations, Appl. Math., 39 (2012), 315–328. https://doi.org/10.4064/am39-3-6 doi: 10.4064/am39-3-6 |
[13] | B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci., 30 (2010), 1469–1480. https://doi.org/10.1016/S0252-9602(10)60139-7 doi: 10.1016/S0252-9602(10)60139-7 |
[14] | S. Yan, X. Chen, Regularity criterion for the 3D magneto-micropolar fluid flows in terms of pressure, J. Nonlinear Evol. Equations Appl., 2022 (2023), 127–142. |
[15] | Z. Zhang, Regularity criteria for the 3D magneto-micropolar fluid equations via the direction of the velocity, Proc. Math. Sci., 125 (2015), 37–43. https://doi.org/10.1007/s12044-015-0213-z doi: 10.1007/s12044-015-0213-z |
[16] | Y. Z. Wang, Y. Wang, Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity, Math. Methods Appl. Sci., 34 (2011), 2125–2135. https://doi.org/10.1002/mma.1510 doi: 10.1002/mma.1510 |
[17] | J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Methods Appl. Sci., 31 (2008), 1113–1130. https://doi.org/10.1002/mma.967 doi: 10.1002/mma.967 |
[18] | L. Deng, H. Shang, Global well-posedness for $n$-dimensional magneto-micropolar equations with hyperdissipation, Appl. Math. Lett., 111 (2021), 106610. https://doi.org/10.1016/j.aml.2020.106610 doi: 10.1016/j.aml.2020.106610 |
[19] | J. Liu, S. Wang, Initial-boundary value problem for 2D micropolar equations without angular viscosity, Commun. Math. Sci., 16 (2018), 2147–2165. https://doi.org/10.4310/CMS.2018.v16.n8.a5 doi: 10.4310/CMS.2018.v16.n8.a5 |
[20] | S. Wang, W. Xu, J. Liu, Initial-boundary value problem for 2D magneto-micropolar equations with zero angular viscosity, Z. Angew. Math. Phys., 72 (2021), 1–23. https://doi.org/10.1007/s00033-021-01537-3 doi: 10.1007/s00033-021-01537-3 |
[21] | H. Lin, S. Liu, H. Zhang, R. Bai, Global regularity of 2D incompressible magneto-micropolar fluid equations with partial viscosity, Acta Math. Sci., 43 (2023), 1275–1300. https://doi.org/10.1007/s10473-023-0316-z doi: 10.1007/s10473-023-0316-z |
[22] | D. Regmi, J. Wu, Global regularity for the 2D magneto-micropolar equations with partial dissipation, J. Math. Study, 49 (2016), 169–194. https://doi.org/10.4208/jms.v49n2.16.05 doi: 10.4208/jms.v49n2.16.05 |
[23] | H. Shang, J. Zhao, Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion, Nonlinear Anal. Theory Methods Appl., 150 (2017), 194–209. https://doi.org/10.1016/j.na.2016.11.011 doi: 10.1016/j.na.2016.11.011 |
[24] | H. Shang, C. Gu, Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation, Z. Angew. Math. Phys., 70 (2019), 1–22. https://doi.org/10.1007/s00033-019-1129-8 doi: 10.1007/s00033-019-1129-8 |
[25] | H. Shang, J. Wu, Global regularity for 2D fractional magneto-micropolar equations, Math. Z., 297 (2021), 775–802. https://doi.org/10.1007/s00209-020-02532-6 doi: 10.1007/s00209-020-02532-6 |
[26] | Y. Jia, Q. Xie, B. Dong, Global regularity of the 3D magneto-micropolar equations with fractional dissipation, Z. Angew. Math. Phys., 73 (2022), 1–15. https://doi.org/10.1007/s00033-021-01651-2 doi: 10.1007/s00033-021-01651-2 |
[27] | Y. Wang, L. Gu, Global regularity of 3D magneto-micropolar fluid equations, Appl. Math. Lett., 99 (2020), 105980. https://doi.org/10.1016/j.aml.2019.07.011 doi: 10.1016/j.aml.2019.07.011 |
[28] | J. Wu, Regularity criteria for the generalized MHD equations, Commun. Partial Differ. Equations, 33 (2008), 285–306. http://doi.org/10.1080/03605300701382530 doi: 10.1080/03605300701382530 |
[29] | J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295–305. https://doi.org/10.1007/s00021-009-0017-y doi: 10.1007/s00021-009-0017-y |
[30] | Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. I. H. Poincaré C Anal. Non. Linéaire, 24 (2007), 491–505. https://doi.org/10.1016/j.anihpc.2006.03.014 doi: 10.1016/j.anihpc.2006.03.014 |
[31] | J. Wang, W. Tan, Y. Nie, A regularity criterion for the 3D generalized MHD system involving partial components, J. Math. Phys., 64 (2023), 051505. https://doi.org/10.1063/5.0143742 doi: 10.1063/5.0143742 |
[32] | Y. Cai, Z. Lei, Global well-posedness of the incompressible Magnetohydrodynamics, Arch. Ration. Mech. Anal., 228 (2018), 969–993. https://doi.org/10.1007/s00205-017-1210-4 doi: 10.1007/s00205-017-1210-4 |
[33] | B. Yuan, J. Zhao, Global regularity of 2D almost resistive MHD equations, Nonlinear Anal. Real World Appl., 41 (2018), 53–65. https://doi.org/10.1016/j.nonrwa.2017.10.006 doi: 10.1016/j.nonrwa.2017.10.006 |
[34] | Z. Lei, On axially symmetric incompressible Magnetohydrodynamics in three dimensions, J. Differ. Equations, 259 (2015), 3202–3215. https://doi.org/10.1016/j.jde.2015.04.017 doi: 10.1016/j.jde.2015.04.017 |
[35] | J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187–195. https://doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344 |
[36] | Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496–1514. http://doi.org/10.1016/j.matpur.2005.07.003 doi: 10.1016/j.matpur.2005.07.003 |
[37] | C. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141–1151. https://doi.org/10.3934/dcds.2010.26.1141 doi: 10.3934/dcds.2010.26.1141 |