Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Hamiltonian conserved Crank-Nicolson schemes for a semi-linear wave equation based on the exponential scalar auxiliary variables approach

  • The keys to constructing numerical schemes for nonlinear partial differential equations are accuracy, handling of the nonlinear terms, and physical properties (energy dissipation or conservation). In this paper, we employ the exponential scalar auxiliary variable (E-SAV) method to solve a semi-linear wave equation. By defining two different variables and combining the Crank−Nicolson scheme, two semi-discrete schemes are proposed, both of which are second-order and maintain Hamiltonian conservation. Two numerical experiments are presented to verify the reliability of the theory.

    Citation: Huanhuan Li, Lei Kang, Meng Li, Xianbing Luo, Shuwen Xiang. Hamiltonian conserved Crank-Nicolson schemes for a semi-linear wave equation based on the exponential scalar auxiliary variables approach[J]. Electronic Research Archive, 2024, 32(7): 4433-4453. doi: 10.3934/era.2024200

    Related Papers:

    [1] Chunye Gong, Mianfu She, Wanqiu Yuan, Dan Zhao . SAV Galerkin-Legendre spectral method for the nonlinear Schrödinger-Possion equations. Electronic Research Archive, 2022, 30(3): 943-960. doi: 10.3934/era.2022049
    [2] Hongquan Wang, Yancai Liu, Xiujun Cheng . An energy-preserving exponential scheme with scalar auxiliary variable approach for the nonlinear Dirac equations. Electronic Research Archive, 2025, 33(1): 263-276. doi: 10.3934/era.2025014
    [3] Kai Jiang, Wei Si . High-order energy stable schemes of incommensurate phase-field crystal model. Electronic Research Archive, 2020, 28(2): 1077-1093. doi: 10.3934/era.2020059
    [4] Li Yang, Chunlai Mu, Shouming Zhou, Xinyu Tu . The global conservative solutions for the generalized camassa-holm equation. Electronic Research Archive, 2019, 27(0): 37-67. doi: 10.3934/era.2019009
    [5] Guoliang Zhang, Shaoqin Zheng, Tao Xiong . A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29(1): 1819-1839. doi: 10.3934/era.2020093
    [6] Liupeng Wang, Yunqing Huang . Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29(1): 1735-1752. doi: 10.3934/era.2020089
    [7] Wenya Qi, Padmanabhan Seshaiyer, Junping Wang . A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29(3): 2517-2532. doi: 10.3934/era.2020127
    [8] Changling Xu, Tianliang Hou . Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28(2): 897-910. doi: 10.3934/era.2020047
    [9] Hongsong Feng, Shan Zhao . A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, 2021, 29(5): 3141-3170. doi: 10.3934/era.2021031
    [10] Anatoliy Martynyuk, Gani Stamov, Ivanka Stamova, Yulya Martynyuk–Chernienko . On the regularization and matrix Lyapunov functions for fuzzy differential systems with uncertain parameters. Electronic Research Archive, 2023, 31(10): 6089-6119. doi: 10.3934/era.2023310
  • The keys to constructing numerical schemes for nonlinear partial differential equations are accuracy, handling of the nonlinear terms, and physical properties (energy dissipation or conservation). In this paper, we employ the exponential scalar auxiliary variable (E-SAV) method to solve a semi-linear wave equation. By defining two different variables and combining the Crank−Nicolson scheme, two semi-discrete schemes are proposed, both of which are second-order and maintain Hamiltonian conservation. Two numerical experiments are presented to verify the reliability of the theory.



    Nonlinear partial differential equations (PDEs) are often used to describe some significant problems in natural science and engineering technology. The analysis of nonlinear waves has garnered increasing attention in the fields of shallow water, plasma, nonlinear optics, Bose−Einstein condensates, and fluids. The nonlinear PDEs in these fields can be solved using lump solutions. The lump solution and interaction hybrid solutions were first discovered by Zakharov in [1] and Craik in [2], respectively. These special solutions are of great significance for the study of nonlinear integrable equations [3,4,5]. To obtain these analytical solutions, the scholars have proposed a variety of methods, including Ansatz technique [6], Hirota's bilinear method (HBM) [7], and the inverse scattering transform (IST) [8]. The HBM proposed by Hirota, has been widely used as an effective approach to study the nonlinear dynamics wave equation, resulting in numerous richer solutions, such as solitons solutions, novel breather waves, lump solutions, two-wave solutions, and rogue wave solutions ([9,10,11,12,13,14]). These solutions are visualized in three-dimensional graphics via numerical simulations, making it easier to understand the propagation of nonlinear waves.

    The study of the stability of integrable equations, such as the KPI equation, the Ishimori equation, the nonlinear Schrödinger (NLS) equation and the KdV equation have further enriched the theory of nonlinear wave equations. Spectral methods can effectively solve the problem of linear stability. In [15], Degasperis et al. proposed the construction of the eigenmodes of the linearized equation using the associated Lax pair and provided the computation of both analytical and numerical solutions with the example of two coupled NLS equations. In [16], Ablowitz provided a comprehensive review of research methods for integrability and nonlinear waves, including Bäcklund transformations, Darboux transformations, direct integral equations or Riemann−Hilbert or Dbar methods, and HBM. By combining the KdV and NLS equations, the author further elaborated on the ideas and background of the IST method.

    The computation of nonlinear PDEs has become a very active research topic. With advancements in traditional methods like finite element ([17,18]), finite difference ([19,20,21,22,23,24]), finite volume ([25,26,27]), and spectral methods ([28,29,30]), numerous outstanding research results have been achieved in the numerical approximations of nonlinear PDEs. In [31], the authors developed a time-two-grid difference scheme for nonlinear Burgers equations. In [32], a method combining the barycentre Lagrange interpolation collocation technique with a second-order operator splitting approach was proposed for the purpose of solving the NLS equation. Based on novel shifted Delannoy functions, Ansari et al. [33] employed a matrix collocation technique to numerically approximate the singularly perturbed parabolic convection−diffusion−reaction problems.

    In recent years, for the treatment of nonlinear terms, there have been a lot of unconditionally energy dissipative numerical schemes for Allen−Cahn and Cahn−Hilliard gradient flows models, such as:

    (ⅰ) CSS (convex splitting) scheme [34,35,36];

    (ⅱ) IMEX (stabilized semi-implicit) scheme [37,38];

    (ⅲ) ETD (exponential time differencing) scheme [39,40];

    (ⅳ) IEQ (invariant energy quadratization) scheme [41];

    (ⅴ) SAV (scalar auxiliary variable) scheme [42,43];

    (ⅵ) E-SAV (exponential scalar auxiliary variable) scheme [44].

    The idea of (ⅰ) is to decompose the energy function into convex and concave parts, handling the convex part implicitly and the concave part explicitly. The advantage is that it can achieve second-order unconditional stability. However, the drawback is that it still requires solving nonlinear equations. The method of (ⅱ) yields extra error, which makes it difficult to construct a higher-order scheme. The (ⅳ) and (ⅴ) approaches make it easier to handle nonlinear terms by defining auxiliary variables that transform the nonlinear potential function into a simple quadratic form. Nevertheless, an inner product must be calculated before obtaining the next time value. Compared with (ⅳ) and (ⅴ), the variable defined in (ⅵ) does not require any assumptions. And the E-SAV method can easily construct an explicit scheme that can preserve energy stability. But this physical property can not be satisfied with the explicit SAV scheme.

    In addition, Huang et al. [45] studied a new SAV method to approximate the gradient flows, which is an improvement of the SAV method. By defining an auxiliary variable in the new SAV method as a shifted total energy function, instead of focusing on the nonlinear parts of the classic SAV method, we replace the dynamic equation for that variable with the energy balance equation of the gradient flow. This facilitates the construction of high-order and energy-stable discrete schemes. In [46], Liu et al. further developed an exponential semi-implicit scalar auxiliary variable (ESI-SAV) method for the phase field equation. The ESI-SAV method can preserve the advantages of both the new SAV and E-SAV methods and be applied more effectively to other dissipative systems.

    On the basis of the above methods, researchers began to apply the above nonlinear processing techniques to approximate semi-linear wave equations. Jiang et al. [47] proposed an IEQ approach and established an energy-preserving linear implicit scheme for the sine-Gordon equation. In [48], based on the SAV method with a combination of the Gauss technique and the extrapolation method, Li et al. provided a high-order energy-conserving and linearly implicit scheme. Wang et al. [49] developed a second-order SAV Fourier spectral method to solve a nonlinear fractional generalized wave equation.

    The primary objective of this paper is to develop second-order and Hamiltonian conserved semi-discrete schemes for semi-linear wave equations. Following the superiorities of the E-SAV and ESI-SAV methods, two different numerical schemes are given by utilizing the Crank−Nicolson scheme for temporal approximation. Furthermore, the convergence order and the evolution curve of the Hamiltonian function are validated through numerical experiments.

    The paper is organized as follows: In Section 2, by introducing scalar auxiliary variables, we obtain two equivalent forms for the semi-linear wave equation in the continuous case. In Sections 3 and 4, by using the Crank−Nicolson scheme, we propose two semi-discrete schemes corresponding to the equivalent forms and provide proof of the convergence order. Two numerical examples are implemented to test the effectiveness of the theoretical analysis in Section 5.

    We consider the following semi-linear wave equation:

    {yttΔyf(y)=0,xΩ,t(0,T),y(x,t)=0,xΩ,t(0,T),y(x,0)=y0(x),yt(x,0)=g(x),xΩ, (2.1)

    where ΩRd(d=2,3) is a bounded convex domain, T>0 is a fixed number, f(y)=F(y) is a nonlinear term, and F(y) satisfies F(y)C3(R). The Hamiltonian function is defined as

    H(y)=12||yt||2+12||y||2+ΩF(y)dx. (2.2)

    Proposition 2.1. The system (2.1) holds the following Hamiltonian conservation law:

    dH(y)dt=0. (2.3)

    Proof. Multiplying the first equation of the system (2.1) by yt yields

    yttytΔyytf(y)yt=0. (2.4)

    By using the continuous Leibniz rule, we obtain

    yttyt=12((yt)2)t,f(y)yt=(F(y))t, (2.5)

    and

    Δyyt=(yx1x1+yx2x2)yt=(yx1yt)x1+(yx2yt)x2yx1(yt)x1yx2(yt)x2=(yx1yt)x1+(yx2yt)x212(y2x1+y2x2)t. (2.6)

    Inserting (2.5) and (2.6) into (2.4), we obtain

    [12((yt)2)t+12(y2x1+y2x2)t+(F(y))t][(yx1yt)x1+(yx2yt)x2]=0. (2.7)

    Integrating (2.7) over the spatial domain Ω and combining the boundary conditions leads to

    Ω[12((yt)2)t+12(y2x1+y2x2)t+(F(y))t]dx=0, (2.8)

    From (2.8) and (2.2), we can deduce that

    dH(y)dt=Ω[12((yt)2)t+12(y2x1+y2x2)t+(F(y))t]dx=0. (2.9)

    The proof is complete.

    We introduce two scalar auxiliary variables as

    ω=yt,r(t)=ΩF(y)dx=H2(y).

    Then the system (2.1) can be equivalently rewritten as

    ω=yt,xΩ,t(0,T), (2.10)
    ωtΔyqy,rf(y)=0,xΩ,t(0,T), (2.11)
    rt=qy,r(f(y),ω),xΩ,t(0,T), (2.12)
    y(x,t)=0,ω(x,t)=0,xΩ,t(0,T), (2.13)
    y(x,0)=y0(x),ω(x,0)=g(x),r(0)=H2(y0(x)),xΩ, (2.14)

    where

    qy,r=exp{r}exp{H2(y)}.

    For the system (2.10)–(2.14), we have the following lemma:

    Lemma 2.1. (Hamiltonian conservation) The above system (2.10)–(2.14) satisfies

    d˜H(y)dt=0, (2.15)

    where the modified Hamiltonian function

    ˜H(t)=12||ω||2+12||y||2+r. (2.16)

    Proof. Taking the inner product of (2.11) by ω, then combining (2.10) and (2.12), we obtain

    (ωt,ω)+(y,yt)+rt=0.

    Obviously, we can deduce

    ddt(12||ω||2+12||y||2+r)=0.

    The proof is complete.

    Next, introducing a new variable

    R(t)=H(y),

    which satisfies the dissipation law

    dRdt=dH(y)dt=0, (2.17)

    and defining ξ=exp(R)exp(H(y)), we can know that ξ1 in the continuous case. Replacing the factor qy,r in (2.11) by Q(ξ), where Q(ξ) is a polynomial function of ξ, the system (2.1) can be transformed into the following equivalent form:

    ω=yt,xΩ,t(0,T), (2.18)
    ωtΔyQ(ξ)f(y)=0,xΩ,t(0,T), (2.19)
    ξ=exp(R)exp(H(y))xΩ,t(0,T), (2.20)
    Q(ξ)=ξ(2ξ)xΩ,t(0,T), (2.21)
    dRdt=0,xΩ,t(0,T), (2.22)
    y(x,t)=0,ω(x,t)=0,xΩ,t(0,T), (2.23)
    y(x,0)=y0(x),ω(x,0)=g(x),R(0)=H(y0),xΩ. (2.24)

    Furthermore, (2.17) and (2.22) imply that the system (2.18)–(2.24) is Hamiltonian conserved.

    Let 0=t0<t1<...<tN=T be a uniform partition of the time interval [0,T] with the time steps Δt=T/N and tn=nΔt. Then, utilizing the Crank−Nicolson scheme to discretize the system (2.10)–(2.14), a second-order Carnk−Nicolson E-SAV (CN-E-SAV) scheme can be formulated as follows:

    ωn+12=1Δt(yn+1yn), (3.1)
    1Δt(ωn+1ωn)Δyn+12ˆqn+12f(ˆyn+12)=0, (3.2)
    1Δt(rn+1rn)=(ˆqn+12f(ˆyn+12),ωn+12), (3.3)

    where

    ωn+12=12(ωn+1+ωn),yn+12=12(yn+1+yn),

    and ˆqn+12>0 with (ˆyn+12,ˆrn+12) being generated by the first-order scheme with the time step size Δt2, i.e.,

    ˆωn+12=1Δt/2(ˆyn+12yn), (3.4)
    1Δt/2(ˆωn+12ωn)Δˆyn+12qnf(yn)=0, (3.5)
    1Δt/2(ˆrn+12rn)=qn(f(yn),ˆωn+12). (3.6)

    In order to better understand this scheme, by plugging (3.1) into (3.2) and (3.4) into (3.5), respectively, we can get

    2Δt2yn+112Δyn+1=2Δt2yn+2Δtωn+12Δyn+ˆqn+12f(ˆyn+12), (3.7)
    4Δt2ˆyn+12Δˆyn+12=4Δt2yn+2Δtωn+qnf(yn). (3.8)

    So we can implement the CN-E-SAV scheme as follows:

    (i). Computeqnfromqn=exp{rn}exp{H2(yn)};(ii). Computeˆyn+12from(3.8);(iii). Computeˆωn+12from(3.4);(iv). Computeˆrn+12from(3.6);(v). Computeˆqn+12fromˆqn+12=exp{ˆrn+12}exp{H2(ˆyn+12)};(vi). Computeyn+1from(3.7);(vii). Computeωn+1from(3.1);(viii). Computern+1from(3.3).

    We show the conservation of the CN-E-SAV scheme by the following theorem:

    Theorem 3.1. The CN-E-SAV scheme (3.1)–(3.3) is Hamiltonian conserved:

    Hn+1=HnwithHn=12||ωn||2+12||yn||2+rn. (3.9)

    Proof. Taking the inner product with (3.1) and (3.2) by yn+12, ωn+12, we have

    (ωn+12,yn+12)=12Δt||yn+1||212Δt||yn||2, (3.10)

    and

    12||ωn+1||212||ωn||2+Δt(yn+12,ωn+12)ˆqn+12(f(ˆyn+12),ωn+12)Δt=0. (3.11)

    Substituting (3.10) into (3.11) and combining (3.3), we obtain

    (12||ωn+1||2+12||yn+1||2+rn+1)(12||ωn||2+12||yn||2+rn)=0.

    The proof is complete.

    We will follow the next two steps to complete the error estimation of the CN-E-SAV scheme:

    step (ⅰ): complete the error between (2.10)–(2.14) and (3.4)–(3.6);

    step (ⅱ): with the help of the results of step (ⅰ), the error of (2.10)–(2.14) and (3.1)–(3.3) is further estimated.

    For simplicity, we define

    ˆen+12ω=ω(tn+12)ˆωn+12,enω=ω(tn)ωn,ˆen+12y=y(tn+12)ˆyn+12,eny=y(tn)yn,ˆen+12r=r(tn+12)ˆrn+12,enr=r(tn)rn.

    It follows from (2.10)–(2.14) that the exact solution (ω,y,r) satisfies

    ω(tn+12)=1Δt/2(y(tn+12)y(tn))1Δt/2ˆTny1, (3.12)
    ω(tn+12)ω(tn)Δt/2Δy(tn+12)q(tn)f(y(tn))=1Δt/2ˆTnωΔ(y(tn+12)y(tn)), (3.13)
    r(tn+12)r(tn)=(q(tn)f(y(tn)),y(tn+12)y(tn)ˆTny2)+ˆTnr, (3.14)

    where the truncation functions are defined as

    ˆTnω=tn+12tn(tn+12t)ωttdt,ˆTny1=tn+12tn(tnt)yttdt,ˆTny2=tn+12tn(tn+12t)yttdt,ˆTnr=tn+12tn(tn+12t)rttdt,

    and satisfy

    ||ˆTnω||2C(Δt)3tn+12tn||ωtt||2dt,||ˆTny1||2C(Δt)3tn+12tn||ytt||2dt, (3.15)
    ||ˆTny2||2C(Δt)3tn+12tn||ytt||2dt,|ˆTnr|2C(Δt)3tn+12tn|rtt|2dt. (3.16)

    For the purposes of theorem proving, we present the following assumptions and lemmas:

    Assumption 3.1. There exist constants Q, Q, ˜Q, and ˜Q independent of Δt such that QqnQ, ˜Qˆqn+12˜Q for all n.

    Lemma 3.1. Denote

    A=q(tn)f(y(tn))qnf(yn),B=ˆqn+12f(ˆyn+12)q(tn+12)f(y(tn+12)),

    then the following holds:

    ||A||C(||eny||+|enr|),||B||C(||ˆen+12y||+|ˆen+12r|),

    where the constant C>0 depends on Q,Q,˜Q, ˜Q,|Ω|,y0, and ||f||C1(R).

    Proof. Similar to the proof of Lemma 4 of [51], the results can be proved by applying Poincaré's inequality to ||eny||,||ˆen+12y|| once more.

    Lemma 3.2. Assume Δt is sufficiently small and satisfies

    ytL(0,T;L2)L2(0,T;H2),yttL2(0,T;L2)L2(0,T;H1),ytttL2(0,T;L2).

    Then, we have

    ||ˆen+12ω||2+||ˆen+12y||2+|ˆen+12r|2ˇC(Δt)3tn+12tn(||ωtt||2+||ytt||2+|rtt|2+||ytt||2+||yt||2H2(Ω))ds+ˇC(||enω||2+||eny||2+|enr|2). (3.17)

    Proof. Subtracting (3.4)–(3.6) from (3.12)–(3.14), we have the error equations as

    ˆen+12ω=1Δt/2(ˆen+12yeny)1Δt/2ˆTny1, (3.18)
    ˆen+12ωenωΔt/2Δˆen+12y=q(tn)f(y(tn))qnf(yn)Δ(y(tn+12)y(tn))+1Δt/2ˆTnω, (3.19)
    ˆen+12renr=(qnf(yn),ˆen+12yeny)+(qnf(yn)q(tn)f(y(tn)),y(tn+12)y(tn))+(q(tn)f(y(tn)),ˆTny2)+ˆTnr. (3.20)

    Taking the inner product of (3.19) with ˆen+12ω and combining (3.18), we have

    ||ˆen+12ω||2||enω||2+||ˆen+12ωenω||2+||ˆen+12y||2||eny||2+||(ˆen+12yeny)||2=Δt(A,ˆen+12ω)Δt(Δ(y(tn+12)y(tn)),ˆen+12ω)+2(ˆTnω,ˆen+12ω)2(ˆTny1,Δˆen+12y):=Λ1+Λ2+Λ3+Λ4. (3.21)

    For the first term on the right-hand side of (3.21), according to Lemma 3.1, we obtain

    Λ1C(Δt)2||A||2+14||ˆen+12ω||2˜C1(Δt)2(||eny||2+|enr|2)+14||ˆen+12ω||2. (3.22)

    Then for Λ2,Λ3,Λ4, using Young's inequality and (3.15), one has

    Λ2C(Δt)3tn+12tn||yt||2H2(Ω)ds+14||ˆen+12ω||2, (3.23)
    Λ3C(Δt)3tn+12tn||ωtt||2dt+14||ˆen+12ω||2, (3.24)
    Λ4C(Δt)3tn+12tn||ytt||2dt+14||ˆen+12y||2. (3.25)

    Combining (3.22)–(3.25) with (3.21), we can have

    ||ˆen+12ω||2+4||ˆen+12ωenω||2+||ˆen+12y||2+4||(ˆen+12yeny)||24˜C1(Δt)2(||eny||2+|enr|2)+4(||enω||2+||eny||2)+C(Δt)3tn+12tn(||ωtt||2+||ytt||2+||yt||2H2(Ω))ds. (3.26)

    Multiplying (3.20) by ˆen+12r, we can obtain

    |ˆen+12r|2|enr|2+|ˆen+12renr|2=2(qnf(yn),ˆen+12yeny)ˆen+12r2(A,y(tn+12)y(tn))ˆen+12r+2(q(tn)f(y(tn)),ˆTny2)ˆen+12r+2ˆTnrˆen+12r:=Ψ1+Ψ2+Ψ3+Ψ4. (3.27)

    According to qnQ,FC3(R), and Poincaré's inequality, we can derive the following estimate for Ψ1:

    Ψ1||qnf(yn)||||ˆen+12yeny|||ˆen+12r|C||(ˆen+12yeny)||2+14|ˆen+12r|2. (3.28)

    The estimate for Ψ2 is similar to (3.22), so we obtain

    Ψ2Δt||A||||y(tn+12)y(tn)Δt|||ˆen+12r|˜C2(Δt)2(||eny||2+|enr|2)+14|ˆen+12r|2. (3.29)

    For the last two terms of (3.27), by utilizing (3.16), we have that

    Ψ3+Ψ4C(Δt)3tn+12tn(|rtt|2+||ytt||2)ds+14|ˆen+12r|2. (3.30)

    Therefore, injecting (3.28)–(3.30) into (3.27) leads to

    |ˆen+12r|2+4|ˆen+12renr|24˜C2(Δt)2(||eny||2+|enr|2)+C(Δt)3tn+12tn(|rtt|2+||ytt||2)dt+4C||(ˆen+12yeny)||2+4|enr|2. (3.31)

    Multiplying (3.26) by C and adding it to (3.31) implies

    C||ˆen+12ω||2+C||ˆen+12y||2+|ˆen+12r|24(˜C1C+˜C2)(Δt)2(||eny||2+|enr|2)+4C(||enω||2+||eny||2)+4|enr|2+C(Δt)3tn+12tn(||ωtt||2+||ytt||2+|rtt|2+||ytt||2+||yt||2H2(Ω))ds.

    The proof is completed when C1 and (Δt)2C˜C1C+˜C2.

    Next, we will derive the convergence order of the CN-E-SAV scheme (3.1)–(3.3). Clearly, the exact solution (ω,y,r) satisfies

    ω(tn+1)+ω(tn)2=1Δt(y(tn+1)y(tn))+Rnω1ΔtTny, (3.32)
    1Δt(ω(tn+1)ω(tn))Δy(tn+1)+y(tn)2q(tn+12)f(y(tn+12))=1ΔtTnωΔRny, (3.33)
    1Δt(r(tn+1)r(tn))=(q(tn+12)f(y(tn+12)),ω(tn+1)+ω(tn)2Rω)+1ΔtTnr, (3.34)

    where the truncation functions are defined by

    Tω=ω(tn+1)ω(tn)Δtωt(tn+12),Ty=y(tn+1)y(tn)Δtyt(tn+12),Tr=r(tn+1)r(tn)Δtrt(tn+12),Rω=ω(tn+1)+ω(tn)2ω(tn+12),Ry=y(tn+1)+y(tn)2y(tn+12),Rr=r(tn+1)+r(tn)2r(tn+12).

    The truncation functions satisfy the following lemma:

    Lemma 3.3. ([50]) The following estimates hold

    ||Tω||2C(Δt)5tn+1tn||ωttt||2ds,||Ty||2C(Δt)5tn+1tn||yttt||2ds,|Tr|2C(Δt)5tn+1tn|rttt|2ds,||Rω||2C(Δt)3tn+1tn||ωtt||2ds,||Ry||2C(Δt)3tn+1tn||ytt||2ds,|Rr|2C(Δt)3tn+1tn|rtt|2ds.

    Theorem 3.2. Let (ω(tn),y(tn),r(tn)) and (ωn,yn,rn) be the solutions of (2.10)–(2.14) and CN-E-SAV scheme (3.1)–(3.3), respectively. Suppose that the assumptions in Lemma 3.2 hold and assume further

    yttL2(0,T;L2)L2(0,T;H2),ytttL2(0,T;L2)L2(0,T;H1),yttttL2(0,T;L2).

    Then, we have

    ||enω||2+||eny||2+|enr|2C(Δt)4.

    Proof. Subtracting (3.1)–(3.3) from (3.32)–(3.34), we derive the following error equations:

    en+12ω=1Δt(en+1yeny)+Rnω1ΔtTny, (3.35)
    1Δt(en+1ωenω)Δen+12y=q(tn+12)f(y(tn+12))ˆqn+12f(ˆyn+12)+1ΔtTnωΔRny, (3.36)
    1Δt(en+1renr)=(ˆqn+12f(ˆyn+12)q(tn+12)f(y(tn+12)),ω(tn+1)+ω(tn)2)(ˆqn+12f(ˆyn+12),en+12ω)+(q(tn+12)f(y(tn+12)),Rnω)+1ΔtTnr. (3.37)

    Taking the inner product of (3.36) with en+12ω and combining (3.35), we have

    12||en+1ω||212||enω||2+12||en+1y||212||eny||2=Δt(B,en+12ω)+(Tnω,en+12ω)Δt(ΔRny,en+12ω)Δt(en+12y,Rnω)Δt(en+12y,Tny):=Υ1+Υ2+Υ3+Υ4+Υ5. (3.38)

    According to Lemma 3.1, we obtain

    Υ1CΔt(|ˆen+12r|2+||ˆen+12y||2+||en+12ω||2). (3.39)

    For the last four terms of (3.38), it follows from Lemma 3.3 that

    Υ2C(Δt)4tn+1tn||ωttt||2dt+CΔt||en+12ω||2, (3.40)
    Υ3C(Δt)4tn+1tn||Δytt||2dt+CΔt||en+12ω||2, (3.41)
    Υ4C(Δt)4tn+1tn||ωtt||2dt+CΔt||en+12y||2, (3.42)
    Υ5C(Δt)4tn+1tn||yttt||2dt+CΔt||en+12y||2. (3.43)

    Substituting (3.39)–(3.43) into (3.38), we can obtain

    12||en+1ω||212||enω||2+12||en+1y||212||eny||2CΔt(|ˆen+12r|2+||ˆen+12y||2)+CΔt(||en+12ω||2+||en+12y||2)+C(Δt)4tn+1tn(||ωttt||2+||yttt||2+||Δytt||2+||ωtt||2)dt. (3.44)

    Multiplying (3.3) by en+12r, we obtain

    12(|en+1r|2|enr|2)=Δten+12r(B,ω(tn+1)+ω(tn)2)Δten+12r(ˆqn+12f(ˆyn+12),en+12ω)+Δt(q(tn+12)f(y(tn+12)),Rnω)en+12r+Tnren+12r:=Φ1+Φ2+Φ3+Φ4. (3.45)

    Next, we estimate the right-hand side of (3.45). Applying Lemma 3.1, Lemma 3.3, and Young's inequality, we deduce that

    Φ1CΔt|en+12r|||B||||ω(tn+1)+ω(tn)2||CΔt(|ˆen+12r|2+||ˆen+12y||2+|en+12r|2), (3.46)
    Φ2CΔt(|en+12r|2+||en+12ω||2), (3.47)
    Φ3+Φ4C(Δt)4tn+1tn(||ωtt||2+|rttt|2)dt+CΔt|en+12r|2. (3.48)

    Combining the above estimates of (3.46)–(3.48) together, one has

    12|en+1r|212|enr|2CΔt(|ˆen+12r|2+||ˆen+12y||2)+CΔt(||en+12ω||2+|en+12r|2)+C(Δt)4tn+1tn(||ωtt||2+|rttt|2)dt. (3.49)

    By adding (3.44) and (3.49) and summing the index k from 0 to n1, we obtain

    ||enω||2+||eny||2+||enr||2CΔtn1k=0(||ekω||2+||eky||2+|ekr|2)+CΔtn1k=0(|ˆek+12r|2+||ˆek+12y||2)+C(Δt)4tn0(||ωttt||2+|rttt|2+||yttt||2+||ωtt||2+||ytt||2+|rtt|2+||Δytt||2+||ωtt||2)dt.

    Applying Lemma 3.2 and the discrete Gronwall's inequality, we can complete the proof.

    For the system (2.18)–(2.24), we obtain the semi-discrete new Crank−Nicolson E-SAV (New-CN-E-SAV) scheme by adopting the Crank−Nicolson scheme as

    ωn+1+ωn2=1Δt(yn+1yn), (4.1)
    1Δt(ωn+1ωn)Δyn+1+yn2Q(ξn+1)f(ˆyn+12)=0, (4.2)
    ξn+1=exp(Rn+1)exp(H(ˆyn+12)), (4.3)
    Q(ξn+1)=ξn+1(2ξn+1), (4.4)
    1Δt(Rn+1Rn)=0, (4.5)

    where ˆyn+12 is obtained by solving the following equation:

    ˆwn+12=1Δt/2(ˆyn+12yn), (4.6)
    1Δt/2(ˆωn+12ωn)Δˆyn+12f(yn)=0. (4.7)

    From (4.5), we can find that the New-CN-E-SAV scheme (4.1)–(4.5) also enjoys the same conservation as the CN-E-SAV scheme (3.1)–(3.3).

    Theorem 4.1. The New-CN-E-SAV scheme (4.1)–(4.5) is Hamiltonian conserved in the sense that

    Rn+1=Rn==R0.

    Further, according to Theorem 4.1, the Eq (4.3) can be simplified as

    ξn+1=exp(R0)exp(H(ˆyn+12)). (4.8)

    In order to better illustrate the calculation process of the New-CN-E-SAV scheme (4.1)–(4.5), plugging (4.1) and (4.6) into (4.2) and (4.7), respectively, we obtain

    (2Δt212Δ)yn+1=2Δt2yn+2Δtωn+12Δyn+Q(ξn+1)f(ˆyn+12), (4.9)
    (4Δt2Δ)ˆyn+12=4Δt2yn+2Δtωn+f(yn). (4.10)

    So the New-CN-E-SAV scheme can be implemented as follows:

    (i). solveˆyn+12from(4.10);(ii). solveˆωn+12from(4.6);(iii). computeξn+1from(4.8);(iv). computeQ(ξn+1)from(4.4);(v). solveyn+12from(4.9);(vi). solveωn+12from(4.1).

    For the convergence order of the New-CN-E-SAV scheme, from (4.6) and (4.7), we can obtain

    ˆyn+12=y(tn+12)+O(Δt2), (4.11)
    ˆωn+12=ω(tn+12)+O(Δt2). (4.12)

    Referring to [46] and combining (4.11) and (4.12), we obtain

    ξn+1=exp(R0)exp(H(ˆyn+12))=ξ(tn+1)+CΔt=1+CΔt.

    Then, we derive that

    Q(ξn+1)=ξn+1(2ξn+1)=(ξ(tn+1)+CΔt)(2ξ(tn+1)CΔt)=(1+CΔt)(1CΔt)=1C2Δt2,

    which means that the New-CN-E-SAV scheme can achieve second-order approximation.

    In this section, two examples are presented to test the validity of the theory. We set

    Ω=[0,L]2,L=2,T=1,
    y0=0.005sinπx1sinπx2,
    ω0=0.005sinπx1sinπx2,

    and consider different nonlinear functions F(y) to simulate the order of convergence and the Hamiltonian conservation. Discretize the physical space by the Fourier spectral method with a spatial step h=L/29. Since we do not have the exact solution, we thus select the sufficiently small time step Δt=1/1024 as the reference solution.

    Example 5.1. In this example, we choose the nonlinear function F(y) and initial values r0,R0 as follows:

    F(y)=1cosy,r0=ΩF(y0)dx,R0=H(y0).

    Example 5.2 In this example, we select

    F(y)=14(y21)2,r0=ΩF(y0)dx,R0=H(y0).

    For the CN-E-SAV and New-CN-E-SAV schemes, the error between the numerical solution and the exact solution in the sense of L2-norm is listed in Tables 16, where Tables 13 and 46 show the numerical results for Examples 5.1 and 5.2, respectively.

    Table 1.  Error results and convergence rate of eny for the CN-E-SAV and New-CN-E-SAV schemes in Example 5.1.
    Δt eny Rate
     CN-E-SAV  1/24 0.0368091884426225 -
    1/25 0.00932236109731148 1.98129864079567
    1/26 0.00233174733113645 1.99928392995304
    1/27 0.000576576259379840 2.01582812615784
    1/28 0.000137310038533674 2.07007433221585
    eny Rate
     New-CN-E-SAV  1/24 0.0368091815051726 -
    1/25 0.00932235922830067 1.98129865813145
    1/26 0.00233174685298024 1.99928393655572
    1/27 0.000576576140697115 2.01582812727880
    1/28 0.000137310011085410 2.07007432364543

     | Show Table
    DownLoad: CSV
    Table 2.  Error results and convergence rate of enω for the CN-E-SAV and New-CN-E-SAV schemes in Example 5.1.
    Δt enω Rate
     CN-E-SAV  1/24 0.0689301039227398 -
    1/25 0.0168861504409056 2.02929371796555
    1/26 0.00418704131563571 2.01183741338057
    1/27 0.00103299161999948 2.01910260335564
    1/28 0.000245854829212462 2.07094995184852
    enω Rate
     New-CN-E-SAV  1/24 0.0689300760782284 -
    1/25 0.0168861432622035 2.02929374850860
    1/26 0.00418703950543584 2.01183742378274
    1/27 0.0010329911717826 2.01910260561751
    1/28 0.000245854724513483 2.07094994024234

     | Show Table
    DownLoad: CSV
    Table 3.  Error results and convergence rate of |enr| for the CN-E-SAV scheme in Example 5.1.
    Δt |enr| Rate
     CN-E-SAV  1/24 2.86566749793482e-07 -
    1/25 6.97595495640488e-08 2.03840859427113
    1/26 1.72124441615129e-08 2.01893875053861
    1/27 4.23455884358817e-09 2.02316839164966
    1/28 1.00635793461970e-09 2.07306815290817

     | Show Table
    DownLoad: CSV
    Table 4.  Error results and convergence rate of eny for the CN-E-SAV and New-CN-E-SAV schemes in Example 5.2.
    Δt eny Rate
     CN-E-SAV  1/24 0.0371725171404962 -
    1/25 0.00943514340320470 1.97812003334643
    1/26 0.00236120638866597 1.99852029490610
    1/27 0.000583930678977017 2.01565513477143
    1/28 0.000139064798763014 2.07003983134903
    eny Rate
     New-CN-E-SAV  1/24 0.0371725163498753 -
    1/25 0.00943514322606903 1.97812002974700
    1/26 0.00236120634599168 1.99852029389485
    1/27 0.000583930668215755 2.01565513528492
    1/28 0.000139064795893768 2.07003983452791

     | Show Table
    DownLoad: CSV
    Table 5.  Error results and convergence rate of enω for the CN-E-SAV and New-CN-E-SAV schemes in Example 5.2.
    Δt enω Rate
     CN-E-SAV  1/24 0.0818241862777186 -
    1/25 0.0201549897717315 2.02139029902935
    1/26 0.00500392653834192 2.01000453619864
    1/27 0.00123483574539119 2.01874145867249
    1/28 0.000293902813805396 2.07090807463406
    enω Rate
     New-CN-E-SAV  1/24 0.0818241821912869 -
    1/25 0.0201549887134675 2.02139030272942
    1/26 0.00500392626767036 2.01000453848608
    1/27 0.00123483567363466 2.01874146446974
    1/28 0.000293902792746018 2.07090809417398

     | Show Table
    DownLoad: CSV
    Table 6.  Error results and convergence rate of |enr| for the CN-E-SAV scheme in Example 5.2.
    Δt |enr| Rate
     CN-E-SAV  1/24 3.36996122007882e-07 -
    1/25 8.30406444718435e-08 2.02084244415644
    1/26 2.05944534759084e-08 2.01156179910102
    1/27 5.07805131277905e-09 2.01990896293877
    1/28 1.20806775694149e-09 2.07157359980540

     | Show Table
    DownLoad: CSV

    The evolution of the Hamiltonian function with respect to the CN-E-SAV and New-CN-E-SAV schemes in Examples 5.1 and 5.2 is depicted in Figure 1.

    Figure 1.  Evolutions of the Hamiltonian for the CN-E-SAV and New-CN-E-SAV schemes with the time step Δt=126 in Example 5.1 (left) and in Example 5.2 (right).

    From the analysis of the data presented in Tables 16, it is evident that the error decreases as the time step Δt decreases. And the numerical results for the convergence order of the variables ω,y,r in Examples 5.1 and 5.2 are consistent with the theoretical results. This thereby further illustrates the effectiveness of the CN-E-SAV and New-CN-E-SAV schemes.

    Figure 1 clearly shows that, regardless of the different nonlinear functions selected in the two examples, the CN-E-SAV and New-CN-E-SAV schemes successfully maintain the conservation property of the Hamiltonian function.

    In this work, we develop the CN-E-SAV and New-CN-E-SAV schemes to approximate a semi-linear wave equation with the following advantages: (ⅰ) it preserves Hamiltonian conservation; (ⅱ) it is efficient; and (ⅳ) it is easy to implement. The further topic can also involve designing the high-order BDFk-E-SAV schemes or applying them to other nonlinear problems. It is also meaningful to consider the construction of numerical schemes for the nonlinear localized wave equations.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the National Natural Science Foundation of China (Granted No. 11961008) and Guizhou University Doctoral Foundation (Granted NO. 15 (2022)).

    The authors declare there is no conflict of interest.



    [1] V. E. Zakharov, Exact solutions to the problem of the parametric interaction of three-dimensional wave packets, Sov. Phys. Dokl., 21 (1976).
    [2] A. D. D. Craik, J. A. Adam, Evolution in space and time of resonant wave triads-Ⅰ. The'pump-wave approximation', Proc. R. Soc. Lond. A. Math. Phys. Sci., 363 (1978), 243–255. https://doi.org/10.1098/rspa.1978.0166 doi: 10.1098/rspa.1978.0166
    [3] I. Ahmed, A. R. Seadawy, D. Lu, Mixed lump-solitons, periodic lump and breather soliton solutions for (2+ 1)-dimensional extended Kadomtsev-Petviashvili dynamical equation, Int. J. Mod. Phys. B, 33 (2019), 1950019. https://doi.org/10.1142/S021797921950019X doi: 10.1142/S021797921950019X
    [4] Y. L. Ma, B. Q. Li, Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: hidden rogue wave and hidden soliton, Comput. Math. Appl., 78 (2019), 827–839. https://doi.org/10.1016/j.camwa.2019.03.002 doi: 10.1016/j.camwa.2019.03.002
    [5] A. Yusuf, T. A. Sulaiman, M. Inc, M. Bayram, Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey-Dodd-Gibbon equation, Eur. Phys. J. Plus, 135 (2020), 1–8. https://doi.org/10.1140/epjp/s13360-020-00566-7 doi: 10.1140/epjp/s13360-020-00566-7
    [6] K. Hosseini, M. Samavat, M. Mirzazadeh, S. Salahshour, D. Baleanu, A new (4+1)-dimensional burgers equation: its backlund transformation and real and complex N-Kink solitons, Int. J. Appl. Comput. Math., 8 (2022), 172. https://doi.org/10.1007/s40819-022-01359-5 doi: 10.1007/s40819-022-01359-5
    [7] B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204–214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015
    [8] W. X. Ma, Riemann-Hilbert problems and soliton solutions of type (-λ,λ) reduced nonlocal integrable mKdV hierarchies, Mathematics, 10 (2022), 870. https://doi.org/10.3390/math10060870 doi: 10.3390/math10060870
    [9] Z. Zhao, L. He, M-lump, high-order breather solutions and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation, Nonlinear Dyn., 100 (2020), 2753–2765. https://doi.org/10.1007/s11071-020-05611-9 doi: 10.1007/s11071-020-05611-9
    [10] J. G. Liu, M. S. Osman, Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water wave equation, Chin. J. Phys., 77 (2022), 1618–1624. https://doi.org/10.1016/j.cjph.2021.10.026 doi: 10.1016/j.cjph.2021.10.026
    [11] U. Younas, T. A. Sulaiman, J. Ren, A. Yusuf, Lump interaction phenomena to the nonlinear ill-posed Boussinesq dynamical wave equation, J. Geom. Phys., 178 (2022), 104586. https://doi.org/10.1016/j.geomphys.2022.104586 doi: 10.1016/j.geomphys.2022.104586
    [12] H. F. Ismael, H. Bulut, M. S. Osman, The N-soliton, fusion, rational and breather solutions of two extensions of the (2+1)-dimensional Bogoyavlenskii-Schieff equation, Nonlinear Dyn., 107 (2022), 3791–3803. https://doi.org/10.1007/s11071-021-07154-z doi: 10.1007/s11071-021-07154-z
    [13] S. Saifullah, S. Ahmad, M. A. Alyami, M. Inc, Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed KdV equation using Hirota bilinear approach, Phys. Lett. A, 454 (2022), 128503. https://doi.org/10.1016/j.physleta.2022.128503 doi: 10.1016/j.physleta.2022.128503
    [14] Q. J. Feng, G. Q. Zhang, Lump solution, lump-stripe solution, rogue wave solution and periodic solution of the (2+1)-dimensional Fokas system, Nonlinear Dyn., 112 (2024), 4775–4792. https://doi.org/10.1007/s11071-023-09243-7 doi: 10.1007/s11071-023-09243-7
    [15] A. Degasperis, S. Lombardo, M. Sommacal, Integrability and linear stability of nonlinear waves, J. Nonlinear Sci., 28 (2018), 1251–1291. https://doi.org/10.1007/s00332-018-9450-5 doi: 10.1007/s00332-018-9450-5
    [16] M. J. Ablowitz, Integrability and nonlinear waves, Emerging Front. Nonlinear Sci., 32 (2020), 161–184. https://doi.org/10.1007/978-3-030-44992-6_7 doi: 10.1007/978-3-030-44992-6_7
    [17] M. He, P. Sun, Energy-preserving finite element methods for a class of nonlinear wave equations, Appl. Numer. Math., 157 (2020), 446–469. https://doi.org/10.1016/j.apnum.2020.06.016 doi: 10.1016/j.apnum.2020.06.016
    [18] M. He, J. Tian, P. Sun, Z. Zhang, An energy-conserving finite element method for nonlinear fourth-order wave equations, Appl. Numer. Math., 183 (2023), 333–354. https://doi.org/10.1016/j.apnum.2022.09.011 doi: 10.1016/j.apnum.2022.09.011
    [19] Y. Shi, X. Yang, Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers equation, Electron. Res. Arch., 32 (2024), 1471–1497. https://doi.org/10.3934/era.2024068 doi: 10.3934/era.2024068
    [20] D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. Comput. Appl. Math., 134 (2001), 37–57. https://doi.org/10.1016/S0377-0427(00)00527-6 doi: 10.1016/S0377-0427(00)00527-6
    [21] Y. Liao, L. B. Liu, L. Ye, T. Liu, Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation, Appl. Math. Lett., 145 (2023), 108755. https://doi.org/10.1016/j.aml.2023.108755 doi: 10.1016/j.aml.2023.108755
    [22] Z. Zhou, H. Zhang, X. Yang, CN ADI fast algorithm on non-uniform meshes for the three-dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamics, Appl. Math. Comput., 474 (2024), 128680. https://doi.org/10.1016/j.amc.2024.128680 doi: 10.1016/j.amc.2024.128680
    [23] Y. O. Tijani A. R. Appadu, Unconditionally positive NSFD and classical finite difference schemes for biofilm formation on medical implant using Allen-Cahn equation, Demonstratio Math., 55 (2022), 40–60. https://doi.org/10.1515/dema-2022-0006 doi: 10.1515/dema-2022-0006
    [24] H. Zhang, X. Yang, Y. Liu, Y Liu, An extrapolated CN-WSGD OSC method for a nonlinear time fractional reaction-diffusion equation, Appl. Numer. Math., 157 (2020), 619–633. https://doi.org/10.1016/j.apnum.2020.07.017 doi: 10.1016/j.apnum.2020.07.017
    [25] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [26] S. F. Bradford, B. F. Sanders, Finite-volume models for unidirectional, nonlinear, dispersive waves, J. Waterw. Port. Coast., 128 (2002), 173–182. https://doi.org/10.1061/(ASCE)0733-950X(2002)128:4(173) doi: 10.1061/(ASCE)0733-950X(2002)128:4(173)
    [27] X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [28] J. Shen, T. Tang, L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Science Business Media, 2011.
    [29] M. Dehghan, A. Taleei, Numerical solution of nonlinear Schrödinger equation by using time-space-pseudo-spectral method, Numer. Meth. Part. Differ. Equations: Int. J., 26 (2010), 979–992. https://doi.org/10.1002/num.20468 doi: 10.1002/num.20468
    [30] T. Lu, W. Cai, A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials, J. Comput. Appl. Math., 220 (2008), 588–614. https://doi.org/10.1016/j.cam.2007.09.025 doi: 10.1016/j.cam.2007.09.025
    [31] Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers equation, J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
    [32] M. Yao, Z. Weng, A numerical method based on operator splitting collocation scheme for nonlinear Schrödinger equation, Math. Comput. Appl., 29 (2024), 6. https://doi.org/10.3390/mca29010006 doi: 10.3390/mca29010006
    [33] K. J. Ansari, M. Izadi, S. Noeiaghdam, Enhancing the accuracy and efficiency of two uniformly convergent numerical solvers for singularly perturbed parabolic convection- diffusion-reaction problems with two small parameters, Demonstratio Math., 57 (2024), 20230144. https://doi.org/10.1515/dema-2023-0144 doi: 10.1515/dema-2023-0144
    [34] Z. Guan, C. Wang, S. M. Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation, Numer. Math., 128 (2014), 377–406. https://doi.org/10.1007/s00211-014-0608-2 doi: 10.1007/s00211-014-0608-2
    [35] Z. Guan, J. S. Lowengrub, C. Wang, S. M. Wise, Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48–71. https://doi.org/10.1016/j.jcp.2014.08.001 doi: 10.1016/j.jcp.2014.08.001
    [36] J. Shen, C. Wang, X. Wang, S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105–125. https://doi.org/10.1137/110822839 doi: 10.1137/110822839
    [37] X. Feng, T. Tang, J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, East Asian J. Appl. Math., 3 (2013), 59–80. https://doi.org/10.4208/eajam.200113.220213a doi: 10.4208/eajam.200113.220213a
    [38] J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28 (2010), 1669–1691. https://doi.org/10.3934/dcds.2010.28.1669 doi: 10.3934/dcds.2010.28.1669
    [39] L. Ju, X. Li, Z. Qiao, H. Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection, Math. Comput., 87 (2018), 1859-1885. https://doi.org/10.1090/mcom/3262 doi: 10.1090/mcom/3262
    [40] L. Ju, J. Zhang, Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Comput. Mater. Sci., 108 (2015), 272–282. https://doi.org/10.1016/j.commatsci.2015.04.046 doi: 10.1016/j.commatsci.2015.04.046
    [41] J. Zhao, Q. Wang, X. Yang, Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach, Int. J. Numer. Meth. Eng., 110 (2017), 279–300. https://doi.org/10.1002/nme.5372 doi: 10.1002/nme.5372
    [42] J. Shen, J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal., 56 (2018), 2895–2912. https://doi.org/10.1137/17M1159968 doi: 10.1137/17M1159968
    [43] J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), 474–506. https://doi.org/10.1137/17M1150153 doi: 10.1137/17M1150153
    [44] Z. Liu, X. Li, The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing, SIAM J. Sci. Comput., 42 (2020), B630–B655. https://doi.org/10.1137/19M1305914 doi: 10.1137/19M1305914
    [45] F. Huang, J. Shen, Z. Yang, A highly efficient and accurate new scalar auxiliary variable approach for gradient flows, SIAM J. Sci. Comput., 42 (2020), A2514–A2536. https://doi.org/10.1137/19M1298627 doi: 10.1137/19M1298627
    [46] Z. Liu, X. Li, A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system, J. Comput. Phys., 447 (2021), 110703. https://doi.org/10.1016/j.jcp.2021.110703 doi: 10.1016/j.jcp.2021.110703
    [47] C. Jiang, W. Cai, Y. Wang, A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach, J. Sci. Comput., 80 (2019), 1629–1655. https://doi.org/10.1007/s10915-019-01001-5 doi: 10.1007/s10915-019-01001-5
    [48] D. Li, W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput., 83 (2020), 1–17. https://doi.org/10.1007/s10915-020-01245-6 doi: 10.1007/s10915-020-01245-6
    [49] N. Wang, M. Li, C. Huang, Unconditional energy dissipation and error estimates of the SAV Fourier Spectral Method for nonlinear fractional generalized wave equation, J. Sci. Comput., 88 (2021), 19. https://doi.org/10.1007/s10915-021-01534-8 doi: 10.1007/s10915-021-01534-8
    [50] F. Yu, M. Chen, Error analysis of the Crank-Nicolson SAV method for the Allen-Cahn equation on variable grids, Appl. Math. Lett., 125 (2022), 107768. https://doi.org/10.1016/j.aml.2021.107768 doi: 10.1016/j.aml.2021.107768
    [51] L. Ju, X. Li, Z. Qiao, Stabilized exponential-SAV schemes preserving energy dissipation law and maximum bound principle for the Allen-Cahn type equations, J. Sci. Comput., 92 (2022), 66. https://doi.org/10.1007/s10915-022-01921-9 doi: 10.1007/s10915-022-01921-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(888) PDF downloads(49) Cited by(0)

Figures and Tables

Figures(1)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog