In this paper, we study the Liouville-type theorem for the stationary barotropic compressible Navier–Stokes equations in $ \mathbb{R}^{3} $. Based on a fairly general framework of a kind of local mean oscillations integral and Morrey spaces, we prove that the velocity and the density of the flow are trivial without any integrability assumption on the gradient of the velocity.
Citation: Caifeng Liu, Pan Liu. On Liouville-type theorem for the stationary compressible Navier–Stokes equations in $ \mathbb{R}^{3} $[J]. Electronic Research Archive, 2024, 32(1): 386-404. doi: 10.3934/era.2024019
In this paper, we study the Liouville-type theorem for the stationary barotropic compressible Navier–Stokes equations in $ \mathbb{R}^{3} $. Based on a fairly general framework of a kind of local mean oscillations integral and Morrey spaces, we prove that the velocity and the density of the flow are trivial without any integrability assumption on the gradient of the velocity.
[1] | E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, 2003. https://doi.org/10.1093/acprof: oso/9780198528388.001.0001 |
[2] | P. L. Lions, Mathematical Topics in Fluid Mechanics-Volume 2: Compressible Models, Clarendon Press, 1998. |
[3] | A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, 2004. https://doi.org/10.1093/oso/9780198530848.001.0001 |
[4] | J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., 12 (1933), 1–82. |
[5] | G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer Press, 2011. https://doi.org/10.1007/978-0-387-09620-9 |
[6] | D. Chae, J. Wolf, On Liouville type theorem for the stationary Navier–Stokes equations, Calc. Var. Partial Differential Equations, 58 (2019), 111. https://doi.org/10.1007/s00526-019-1549-5 doi: 10.1007/s00526-019-1549-5 |
[7] | P. Liu, G. Q. Liu, Some Liouville-type theorems for the stationary density-dependent Navier–Stokes equations, J. Math. Phys., 63 (2022), 013101. https://doi.org/10.1063/5.0061881 doi: 10.1063/5.0061881 |
[8] | G. Seregin, Liouville type theorem for stationary Navier–Stokes equations, Nonlinearity, 29 (2016), 2191–2195. https://doi.org/10.1088/0951-7715/29/8/2191 doi: 10.1088/0951-7715/29/8/2191 |
[9] | J. R. Kweon, R. B. Kellogg, Smooth solution of the compressible Navier–Stokes equations in an unbounded domain with inflow boundary condition, J. Math. Anal. Appl., 220 (1998), 657–675. https://doi.org/10.1006/jmaa.1997.5872 doi: 10.1006/jmaa.1997.5872 |
[10] | J. R. Kweon, R. B. Kellogg, Regularity of solutions to the Navier–Stokes equations for compressible barotropic flows on a polygon, Arch. Ration. Mech. Anal., 163 (2002), 35–64. https://doi.org/10.1007/s002050200191 doi: 10.1007/s002050200191 |
[11] | J. R. Kweon, R. B. Kellogg, Regularity of solutions to the Navier–Stokes system for compressible flows on a polygon, SIAM J. Math. Anal., 35 (2004), 1451–1485. https://doi.org/10.1137/S0036141002418066 doi: 10.1137/S0036141002418066 |
[12] | D. Chae, Remarks on the Liouville type results for the compressible Navier–Stokes equations in $ \mathbb{R}^{N} $, Nonlinearity, 25 (2012), 1345. https://doi.org/10.1088/0951-7715/25/5/1345 doi: 10.1088/0951-7715/25/5/1345 |
[13] | D. Li, X. W. Yu, On some Liouville type theorems for the compressible Navier–Stokes equations, Discrete Contin. Dyn. Syst., 34 (2014), 4719–4733. https://doi.org/10.3934/dcds.2014.34.4719 doi: 10.3934/dcds.2014.34.4719 |
[14] | Z. Y. Li, P. C. Niu, Notes on Liouville type theorems for the stationary compressible Navier–Stokes equations, Appl. Math. Lett., 114 (2021), 106908. https://doi.org/10.1016/j.aml.2020.106908 doi: 10.1016/j.aml.2020.106908 |
[15] | P. Liu, Liouville-type theorems for the stationary compressible barotropic and incompressible inhomogeneous Navier–Stokes equations, J. Math. Phys., 63 (2022), 123101. https://doi.org/10.1063/5.0085031 doi: 10.1063/5.0085031 |
[16] | P. Liu, A Liouville type theorem for the stationary compressible Navier–Stokes equations, Anal. Math. Phys., 12 (2022), 121. https://doi.org/10.1007/s13324-022-00736-z doi: 10.1007/s13324-022-00736-z |
[17] | X. Zhong, A Liouville theorem for the compressible Navier–Stokes equations, Math. Methods Appl. Sci., 41 (2018), 5091–5095. https://doi.org/10.1002/mma.5055 doi: 10.1002/mma.5055 |
[18] | Z. Y. Li, P. Liu, P. C. Niu, Remarks on Liouville type theorems for the 3D stationary MHD equations, Bull. Korean Math. Soc., 57 (2020), 1151–1164. https://doi.org/10.4134/BKMS.b190828 doi: 10.4134/BKMS.b190828 |
[19] | P. Liu, Liouville-type theorems for the stationary inhomogeneous incompressible MHD equations, J. Math. Anal. Appl., 521 (2023), 126945. https://doi.org/10.1016/j.jmaa.2022.126945 doi: 10.1016/j.jmaa.2022.126945 |
[20] | P. Liu, Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations, Banach J. Math. Anal., 17 (2023), 13. https://doi.org/10.1007/s43037-022-00236-z doi: 10.1007/s43037-022-00236-z |
[21] | Y. Zeng, Liouville-type theorem for the steady compressible Hall-MHD system, Math. Methods Appl. Sci., 41 (2018), 205–211. https://doi.org/10.1002/mma.4605 doi: 10.1002/mma.4605 |
[22] | H. Koch, D. Tataru, Well-posedness for the Navier–Stokes equations, Adv. Math., 157 (2001), 22–35. https://doi.org/10.1006/aima.2000.1937 doi: 10.1006/aima.2000.1937 |
[23] | E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993. https://doi.org/10.1515/9781400883929 |
[24] | O. Jarrín, Liouville theorems for a stationary and non-stationary coupled system of liquid crystal flows in local Morrey spaces, J. Math. Fluid Mech., 24 (2022), 50. https://doi.org/10.1007/s00021-022-00686-3 doi: 10.1007/s00021-022-00686-3 |
[25] | L. Grafakos, Classical Fourier Analysis, Springer Press, 2014. https://doi.org/10.1007/978-1-4939-1194-3 |
[26] | R. O'Neil, Convolution operators and $ L(p, q) $ spaces, Duke Math. J., 30 (1963), 129–142. https://doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1 |
[27] | P. G. Lemarié-Rieusset, The Navier–Stokes Problem in the 21st Century, Chapman & Hall/CRC, 2016. https://doi.org/10.1201/9781315373393 |
[28] | L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer Press, 2007. https://doi.org/10.1007/978-3-540-71483-5 |
[29] | L. C. Evans, Partial Differential Equations, $2nd$ edition, American Mathematical Society, 2010. http://doi.org/10.1090/gsm/019 |
[30] | M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1984. https://doi.org/10.1515/9781400881628 |