In this work, we focus on a nonlinear dynamical model proposed by Lavrentovich et al. to compute and simulate spontaneous Ca2+ oscillations evoked by calcium ion efflux in astrocytes. Selected parameters are chosen, with observation of periodic and chaotic Ca2+ oscillations in cytosol. The stability analysis of equilibrium is conducted using the center manifold theorem to investigate the dynamics underlying spontaneous Ca2+ oscillations in astrocytes. The results indicate that the Hopf bifurcation represents the dynamical changes in stability of spontaneous Ca2+ oscillations. In addition, numerical simulations are performed to further assess the validity of the aforementioned analysis.
Citation: Yapeng Zhang, Yu Chen, Quanbao Ji. Dynamical analysis of spontaneous Ca2+ oscillations in astrocytes[J]. Electronic Research Archive, 2024, 32(1): 405-417. doi: 10.3934/era.2024020
In this work, we focus on a nonlinear dynamical model proposed by Lavrentovich et al. to compute and simulate spontaneous Ca2+ oscillations evoked by calcium ion efflux in astrocytes. Selected parameters are chosen, with observation of periodic and chaotic Ca2+ oscillations in cytosol. The stability analysis of equilibrium is conducted using the center manifold theorem to investigate the dynamics underlying spontaneous Ca2+ oscillations in astrocytes. The results indicate that the Hopf bifurcation represents the dynamical changes in stability of spontaneous Ca2+ oscillations. In addition, numerical simulations are performed to further assess the validity of the aforementioned analysis.
[1] | J. L. Stobart, K. D. Ferrari, M. J. Barrett, Long-term in vivo calcium imaging of astrocytes reveals distinct cellular compartment responses to sensory stimulation, Cereb. Cortex, 28 (2018), 184–198. https://doi.org/10.1093/cercor/bhw366 doi: 10.1093/cercor/bhw366 |
[2] | G. Perea, A. Araque, Astrocytes potentiate transmitter release at single hippocampal synapses, Science, 317 (2007), 1083–1086. https://doi.org/10.1126/science.1144640 doi: 10.1126/science.1144640 |
[3] | A. Covelo, A. Araque, Lateral regulation of synaptic transmission by astrocytes, Neuroscience, 323 (2016), 62–66. https://doi.org/10.1016/j.neuroscience.2015.02.036 doi: 10.1016/j.neuroscience.2015.02.036 |
[4] | Z. Cao, L. Du, H. Zhang, L. Qiu, L. Yan, Z. Deng, Firing activities and magnetic stimulation effects in a Cortico-basal ganglia-thalamus neural network, Electron. Res. Arch., 30 (2022), 2054–2074. https://doi.org/10.3934/era.2022104 doi: 10.3934/era.2022104 |
[5] | Z. Wang, Y. Yang, L. Duan, Dynamic mechanism of epileptic seizures induced by excitatory pyramidal neuronal population, Electron. Res. Arch., 31 (2023), 4427–4442. https://doi.org/10.3934/era.2023226 doi: 10.3934/era.2023226 |
[6] | G. Wallach, J. Lallouette, N. Herzog, M. De Pittà, E. B. Jacob, H. Berry, et al., Glutamate mediated astrocytic filtering of neuronal activity, PLoS Comput. Biol., 10 (2014), e1003964. https://doi.org/10.1371/journal.pcbi.1003964 doi: 10.1371/journal.pcbi.1003964 |
[7] | A. Volterra, J. Meldolesi, Astrocytes, from brain glue to communication elements: the revolution continues, Nat. Rev. Neurosci., 6 (2005), 626–640. https://doi.org/10.1038/nrn1722 doi: 10.1038/nrn1722 |
[8] | E. V. Pankratova, M. S. Sinitsina, S. Gordleeva, V. B. Kazantsev, Bistability and chaos emergence in spontaneous dynamics of astrocytic calcium concentration, Mathematics, 10 (2022), 1337. https://doi.org/10.3390/math10081337 doi: 10.3390/math10081337 |
[9] | K. A. Woll, F. V. Petegem, Calcium-release channels: structure and function of IP3 receptors and ryanodine receptors, Physiol. Rev., 102 (2022), 209–268. https://doi.org/10.1152/physrev.00033.2020 doi: 10.1152/physrev.00033.2020 |
[10] | S. Zeng, B. Li, S. Zeng, S. Chen, Simulation of spontaneous Ca2+ oscillations in astrocytes mediated by voltage-gated calcium channels, Biophys. J., 97 (2009), 2429–2437. https://doi.org/10.1016/j.bpj.2009.08.030 doi: 10.1016/j.bpj.2009.08.030 |
[11] | Y. Wang, A. K. Fu, N. Y. Ip, Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity‐dependent regulatory mechanisms, FEBS J., 289 (2022), 2202–2218. https://doi.org/10.1111/febs.15878 doi: 10.1111/febs.15878 |
[12] | H. Zuo, M. Ye, Bifurcation and numerical simulations of Ca2+ oscillatory behavior in astrocytes, Front. Phys., 8 (2020), 258. https://doi.org/10.3389/fphy.2020.00258 doi: 10.3389/fphy.2020.00258 |
[13] | Q. Ji, Y. Zhou, Z. Yang, X. Meng, Evaluation of bifurcation phenomena in a modified Shen–Larter model for intracellular Ca2+ bursting oscillations, Nonlinear Dyn., 84 (2016), 1281–1288. https://doi.org/10.1007/s11071-015-2566-3 doi: 10.1007/s11071-015-2566-3 |
[14] | X. Qie, Q. Ji, Computational analysis and bifurcation of regular and chaotic Ca2+ oscillations, Mathematics, 9 (2021), 3324. https://doi.org/10.3390/math9243324 doi: 10.3390/math9243324 |
[15] | L. Li, Z. Zhao, Inhibitory autapse with time delay induces mixed-mode oscillations related to unstable dynamical behaviors near subcritical Hopf bifurcation, Electron. Res. Arch., 30 (2022), 1898–1917. https://doi.org/10.3934/era.2022096 doi: 10.3934/era.2022096 |
[16] | F. Aguado, J. F. Espinosa-Parrilla, M. A. Carmona, E. Soriano, Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ, J. Neurosci., 22 (2002), 9430–9444. https://doi.org/10.1523/JNEUROSCI.22-21-09430.2002 doi: 10.1523/JNEUROSCI.22-21-09430.2002 |
[17] | A. J. Barker, E. M. Ullian, New roles for astrocytes in developing synaptic circuits, Commun. Integr. Biol., 1 (2008), 207–211. https://doi.org/10.4161/cib.1.2.7284 doi: 10.4161/cib.1.2.7284 |
[18] | R. A. Chiareli, G. A. Carvalho, B. L. Marques, L. S. Mota, O. C. Oliveira-Lima, R. M. Gomes, et al., The role of astrocytes in the neurorepair process, Front. Cell Dev. Biol., 9 (2021), 665795. https://doi.org/10.3389/fcell.2021.665795 doi: 10.3389/fcell.2021.665795 |
[19] | M. Lavrentovich, S. Hemkin, A mathematical model of spontaneous calcium (Ⅱ) oscillations in astrocytes, J. Theor. Biol., 251 (2008), 553–560. https://doi.org/10.1016/j.jtbi.2007.12.011 doi: 10.1016/j.jtbi.2007.12.011 |
[20] | G. Houart, G. Dupont, A. Goldbeter, Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1, 4, 5-trisphosphate signal in a model for intracellular Ca2+ oscillations, Bull. Math. Biol., 61 (1999), 507–530. https://doi.org/10.1006/bulm.1999.0095 doi: 10.1006/bulm.1999.0095 |
[21] | T. Höfer, L. Venance, C. Giaume, Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach, J. Neurosci., 22 (2002), 4850–4859. https://doi.org/10.1523/JNEUROSCI.22-12-04850.2002 doi: 10.1523/JNEUROSCI.22-12-04850.2002 |