Citation: Danfeng Pang, Yanni Xiao. The SIS model with diffusion of virus in the environment[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
[1] | J. M. Boyce, G. Potter-Bynoe, C. Chenevert, et al., Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications, Infect. Control Hosp. Epidemiol., 18 (1997), 622–627. |
[2] | J. M. Boyce, Environmental contamination makes an important contribution to hospital infection, J. Hosp. Infect., 65 (2007), 50–54. |
[3] | S. J. Dancer, Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning, Lancet Infect. Dis., 8 (2008), 101–113. |
[4] | S. J. Dancer, The role of environmental cleaning in the control of hospital acquired infection, J. Hosp. Infect., 73 (2009), 378–385. |
[5] | D. J. Weber and W. A. Rutala, Role of environmental contamination in the transmission of vancomycin-resistant enterococci, Infect. Control Hosp. Epidemiol., 18 (1997), 306–309. |
[6] | A. Rampling, S. Wiseman, L. Davis, et al., Evidence that hospital hygiene is important in the control of methicillin-resistant Staphylococcus aureus, J. Hosp. Infect., 49 (2001), 109–116. |
[7] | D. J. Austin, M. J. Bonten, R. A. Weinstein, et al., Vancomycin-resistant enterococci in intensivecare hospital settings:transmission dynamics, persistence, and the impact of infection control programs, Proc. Natl. Acad. Sci., 96 (1999), 6908–6913. |
[8] | B. S. Cooper, G. F. Medley and G. M. Scott, Preliminary analysis of the transmission dynamics of nosocomial infections:stochastic and management effects, J. Hosp. Infect., 43 (1999), 131–147. |
[9] | H. Grundmann, S. Hori, B. Winter, et al., Risk factors for the transmission of methicillin-resistant Staphylococcus aureusin an adult intensive care unit:fitting a model to the data, J. Infect. Dis. 185 (2002), 481–488. |
[10] | J. Raboud, R. Saskin, A. Simor, et al., Modeling transmission of methicillin-resistant Staphylococcus aureusamong patients admitted to a hospital, Infect. Control Hosp. Epidemiol., 26 (2005), 607–615. |
[11] | V. Sebille and A. J. Valleron, A computer simulation model for the spread of nosocomial infections caused by multidrug-resistant pathogens, Comput. Biomed. Res., 30 (1997), 307–322. |
[12] | V. Sebille, S. Chevret and A. J. Valleron, Modeling the spread of resistant nosocomial pathogens in an intensive-care unit, Infect. Control Hosp. Epidemiol., 18 (1997), 84–92. |
[13] | X.Wang, Y. Xiao, J.Wang, et al., A mathematical model of effects of environmental contamination and presence of volunteers on hospital infections in China, J. Theor. Biol., 293 (2012), 161–173. |
[14] | X. Wang, Y. Xiao, J. Wang, et al., Stochastic disease dynamics of a hospital infection model, Math. Biosci., 241 (2013), 115–124. |
[15] | X. Wang, Y. Chen, W. Zhao, et al., A data-driven mathematical model of multi-drug resistant Acinetobacter baumannii transmission in an intensive care unit, Sci. Rep., 5 (2015), 9478. |
[16] | L. J. S. Allen, B. M. Bolker, Y. Lou, et al., Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1–20. 17. K. Deng and Y. Wu, Dynamics of a susceptible-infected-susceptible epidemic reaction diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929–946. |
[17] | 18. R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I, J. Diff. Equ., 247 (2009), 1096–1119. |
[18] | 19. R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239–247. |
[19] | 20. R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reactiondi ffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8–25. |
[20] | 21. R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2), 1451–1471. |
[21] | 22. Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Diff. Equ., 261 (2016), 4424–4447. |
[22] | 23. W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. |
[23] | 24. X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2017. |
[24] | 25. L. Zhang, Z. C. Wang and X.-Q. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Diff. Equ., 258 (2015), 3011–3036. |
[25] | 26. L. Zhang and Z.C. Wang, A time-periodic reaction-diffusion epidemic model with infection period, Z. Angew. Math. Phys., 67 (2016), 117, 14 pp. |
[26] | 27. R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Diff. Equ., (2016), 3305–3343. |
[27] | 28. R. Cui, K. Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Diff. Equ., 263 (2017), 2343–2373. |
[28] | 29. K. Kuto, H. Matsuzawa and R. Peng, Concentration profile of the endemic equilibria of a reactiondi ffusion-advection SIS epidemic model, Calc. Var., 56 (2017), 1– |
[29] | 30. H. Li, R. Peng and F.-B. Wang, Vary total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Diff. Equ., 262 (2017), 885–913. |
[30] | 31. H. Li, R. Peng and Z.-A. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129–2153. |
[31] | 32. S. Bonhoeffer, R. M. May, G. M. Shaw, et al., Virus dynamics and drug therapy, Proc. Natl. Acad. Sci., 94 (1997), 6971–6976. |
[32] | 33. M. A. Nowak, S. Bonhoeffer, A. M. Hill, et al., Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci., 93 (1996), 4398–4402. |
[33] | 34. C. M. Brauner, D. Jolly, L. Lorenzi, et al., Heterogeneous viral environment in a HIV spatial model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 545–572. |
[34] | 35. H. Pourbashash, S. S. Pilyugin, P. De Leenheer, et al., Global analysis of within host virus models with cell-to-cell viral transmission, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3–3357. |
[35] | 36. X. Ren, Y. Tian, L. Liu, et al., A reaction-diffusion within-host HIV model with cell-to-cell transmission, J. Math. Biol., 76 (2018), 1–42. |
[36] | 37. F. Wang, Y. Huang and X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312–2329. |
[37] | 38. K. Wang and W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78–95. |
[38] | 39. K. Wang, W. Wang and S. Song, Dynamics of an HBV model with diffusion and delay, J. Theor. Biol., 253 (2008), 36–44. |
[39] | 40. J. Wang, J. Yang and T. Kuniya, Dynamics of a PDE viral infection model incorporating cell-tocell transmission, J. Math. Anal. Appl., 444 (2016), 1542–1564. |
[40] | 41. Y. Wu and X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Diff. Equ., 264 (2018), 4989–5024. |
[41] | 42. Y. Yang, J. Zhou, X. Ma, et al., Nonstandard finite difference scheme for a diffusive within-host virus dynamics model with both virus-to-cell and cell-to-cell transmissions, Comput. Math. Appl., 72 (2016), 1013–1020. |
[42] | 43. H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., 41 (1995). http://b-ok.cc/book/2625388/ 3a5dac |
[43] | 44. R. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. AMS., 321 (1990), 1–44. |
[44] | 45. Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543–568. |
[45] | 46. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer- Verlag, New York, 1984. |
[46] | 47. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. |
[47] | 48. S. B. Hsu, F. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817–842. |
[48] | 49. G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. |
[49] | 50. P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251–275. |
[50] | 51. S. B. Hsu, F. B. Wang and X.-Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Diff. Equ., 255 (2013), 265–297. |
[51] | 52. H. R. Thieme, Convergence results and a Poincar -Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. |
[52] | 53. H. L. Smith and X-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169–6179. |
[53] | 54. P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Diff. Equ., 92 (1991), 252–281. |
[54] | 55. W.Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112. |
[55] | 56. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ., 31 (1979), 53–98. |
[56] | 57. P. Hartman, Ordinary Differential Equations, Wiley and Sons, Baltimore, 1973. http://b-ok. cc/book/981126/b95a4b |
[57] | 58. X. Lai and X. Zou, Repulsion Effect on Superinfecting Virions by Infected Cells, Bull. Math. Biol., 76 (2014), 2806–2833. |