Citation: Donatella Donatelli, Pierangelo Marcati, Licia Romagnoli. A comparison of two mathematical models of the cerebrospinal fluid dynamics[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2811-2851. doi: 10.3934/mbe.2019140
[1] | M. Bulat and M. Klarica, Recent insights into a new hydrodynamics of the cerebrospinal fluid, Brain Res. Rev., 112 (2011), 65–99. |
[2] | P. D. Brown, S. L. Davies, T. Speake, et al., Molecular mechanisms of cerebrospinal fluid production, Neuroscience, 70 (2004), 129–957. |
[3] | C. E. Johanson, J. A. Duncan, P. M. Klinge, et al. , Multiplicity of cerebrospinal fluid functions: New challenges in health and disease, Cerebrospinal Fluid. Res., (2008), 5–10. |
[4] | T. Brinker, E. Stopa, J. Morrison, et al. , A new look at cerebrospinal fluid circulation, Fluids Barriers CNS, 11 (2014), 10. |
[5] | D. Orešković and M. Klarica, The formation of cerebrospinal fluid: Nearly a hundred years of interpretations and misinterpretations, Brain Res. Rev., 64 (2010), 241–262. |
[6] | M. Bulat, V. Lupret, D. Orehković, et al. , Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels, Coll. Antropol., 50 (2008), 32 Suppl. 1–43. |
[7] | R. Spector, S. R. Snodgrass and C. E. Johanson, A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans, Exp. Neurol., 68 (2015), 273–257. |
[8] | R. Roales - Buján, P. Páez, M. Guerra, et al. , Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus, Acta Neuropathol., 46 (2012), 124–531. |
[9] | Z. Czosnyka, M. Czosnyka, A. Lavinio, et al. , Clinical testing of CSF circulation, Eur. J. Anaesthesiol. Suppl., 5 (2008), 42–142. |
[10] | A. A. Linninger, K. Tangen, C. Hsu, et al. , Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics, Annu. Rev. Fluid Mech., 48 (2016), 219–257. |
[11] | I. Cherian, M. Beltran, E. M. Kasper, et al. , Exploring the Virchow-Robin spaces function: A unified theory of brain diseases, Surg. Neurol. Int., 7 (2016), S711–S714. |
[12] | J. Mack, W. Squier and J. T. Eastman, Anatomy and development of the meninges: Implications for subdural collections and CSF circulation, Pediatr. Radiol., 10 (2009), 39–200. |
[13] | A. A. Linninger, C. Tsakiris, D. C. Zhu, et al. , Pulsatile cerebrospinal fluid dynamics in the human brain, IEEE T. Bio-Med. Eng., 52 (2005), 557–565. |
[14] | J. Buishas, I. G. Gould and A. A. Linninger, A computational model of cerebrospinal fluid production and reabsorption driven by Starling forces, Croat. Med. J., 97 (2014), 55–481. |
[15] | A. A. Linninger, M. Xenos, B. Sweetman, et al. , A mathematical model of blood, cerebrospinal fluid and brain dynamics, J. Math. Biol., 59 (2009), 729–759. |
[16] | A. Marmarou, A theoretical model and experimental evaluation of the cerebrospinal fluid system, Ph.D thesis, Drexel University, Philadelphia, 1973. |
[17] | A. Marmarou, K. Shulman and R. M. Rosende, A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics, J. Neurosurg, 48 (1978), 332–344 . |
[18] | D. Chou, J. C. Vardakis, L. Guo et al. , A fully dynamic multicompartmental poroelastic system: Application to aqueductal stenosis, J. Biomech., 49 (2016), 2306–2312. |
[19] | L. Guo, J. C. Vardakis, T. Lassila, et al. , Subjectspecific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer's disease, Interface Focus, 8 (2018), 20170019. |
[20] | D. Chou, J. C. Vardakis and Y. Ventikos, Multiscale modelling for cerebrospinal fluid dynamics: Multicompartmental poroelacticity and the role of AQP4, J. Biosci. Med., 2 (2014), 1–9. |
[21] | M. Ursino, A mathematical study of human intracranial hydrodynamics. Part 1 - The cerebrospinal fluid pulse pressure, Ann. Biomed. Eng., 16 (1988), 379–401. |
[22] | M. Ursino, A mathematical study of human intracranial hydrodynamics. Part 2 - Simulation of clinical tests, Ann. Biomed. Eng., 16 (1988), 403–416. |
[23] | G. Gadda, A. Taibi, F. Sisini, et al. , A new hemodynamic model for the study of cerebral venous outflow, Am. J. Physiol. Heart Circ. Physiol., 308 (2015), H217–H231. |
[24] | M. Gehlen, V. Kurtcuoglu and M. Schmid Daners, Is posture-related craniospinal compliance shift caused by jugular vein collapse? A theoretical analysis, Fluids and Barriers of the CNS, 14 (2017). |
[25] | L. O. Müller and E. F. Toro, Enhanced global mathematical model for studying cerebral venous blood flow, J. Biomech., 47 (2014), 3361–3372. |
[26] | D. Orešković, M. Radoš and M. Klarica, New concepts of cerebrospinal fluid physiology and development of hydrocephalus, Pediatr. Neurosurg., 52 (2017), 417–425. |
[27] | A. A. Linninger, C. Xu, K. Tangen, et al. , Starling forces drive intracranial water exchange during normal and pathological states, Croat. Med. J., 58 (2017), 384–394. |
[28] | D. Donatelli, P. Marcati and L. Romagnoli, Analysis of solutions for a cerebrospinal fluid model, Nonlinear Anal. Real World Appl., 44 (2018), 417–448. |
[29] | H. Davson, K.Welch and M. B. Segal, Physiology and pathophysiology of the cerebrospinal fluid, Edinburgh: Churchill-Livingstone, 1987. |
[30] | N. Alperin, S. H. Lee and A. M. Bagci, MRI Measurements of Intracranial Pressure in the Upright Posture: The Effect of the Hydrostatic Pressure Gradient, J. Magn. Reson. Imaging, 42 (2015), 1158–1163. |
[31] | M. Klarica, M. Rados, G. Erceg, et al. , The Influence of Body Position on Cerebrospinal Fluid Pressure Gradient and Movement in Cats with Normal and Impaired Craniospinal Communication, Plos One, 9 (2014). |
[32] | L. C. Piccinini, G. Stampacchia and G. Vidossich, Ordinary Differential Equations in Rn, Problems and Methods, Springer-Verlag, 1984. |
[33] | A. A. Linninger, M. Xenos, D. C. Zhu, et al., Cerebrospinal Fluid Flow in the Normal and Hydrocephalic Human Brain, IEEE Trans. Biomed. Engng., 54 (2007), 291–302. |
[34] | S. Gholampour, N. Fatouraee, A. S. Seddighi, et al. , A Hydrodynamical Study to Propose a Numerical Index for Evaluating the CSF Conditions in Cerebral Ventricular System, Intern. Clinical Neurosci. J., 1 (2014), 1–9. |
[35] | K. J. Streitberger, E. Wiener, J. Hoffmann, et al. , In Vivo Viscoelastic Properties of the Brain in Normal Pressure Hydrocephalus, NMR Biomed., 24 (2011), 385–392. |
[36] | I. K. Pople, Hydrocephalus and Shunts: What the Neurologist Should Know, J. Neurology, Neurosurgery Psychiatry, 73 (2002), 17–22. |
[37] | A. K. Sharma, S. Gaikwad, V. Gupta, et al. , Measurement of peak CSF flow velocity at cerebral aqueduct, before and after lumbar CSF drainage, by use of phase-contrast MRI: Utility in the management of idiopathic normal pressure hydrocephalus, Clin. Neurol. Neurosur., 110 (2008), 363–368. |
[38] | A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer Science+Business Media, LLC, Series: Applied Mathematical Sciences, 53, 1984. |