Citation: Aftab Ahmed, Javed I. Siddique. The effect of magnetic field on flow induced-deformation in absorbing porous tissues[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 603-618. doi: 10.3934/mbe.2019029
[1] | H. Darcy, Les fontaines publiques de la ville de Dijon, Paris: Dalmont, 1856. |
[2] | D. D. Joseph, D. A. Nield and G. Papanicolaou, Nonlinear equation governing flow in a saturated porous medium, Water Res., 18 (1982), 1049–1052. |
[3] | K. Terzaghi, Erdbaumechanik auf bodenphysikalischen Grundlagen, Wien: Deuticke, 1925. |
[4] | M. A. Biot, General theory of three dimensional consolidation, J. Appl. Phys., 12 (1941), 155–164. |
[5] | M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), 182–185. |
[6] | A. Fick, Ueber diffusion, Annalen der Physik, 170 (1855), 59–86. |
[7] | C. Truesdell, Sulle basi della thermomeccanica, Atti della Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, 22 (1957), 33–38. |
[8] | R. J. Atkin and R. E. Craine, Continuum theories of mixtures: Basic theory and historical development, Q. J. Mech. Appl. Math., 29 (1976), 209–244. |
[9] | R. J. Atkin and R. E. Craine, Continuum theories of mixtures: Applications, J. I. Math. Appl., 17 (1976), 153–207. |
[10] | K. R. Rajagopal and L. Tao, Mechanics of mixtures, World Scientific, Singapore, 1995. |
[11] | J. I. Siddique, A. Ahmed, A. Aziz and C. M. Khalique, A review of mixture theory for deformable porous media and applications, Appl. Sci., 7 (2017), 1–15. |
[12] | D. E. Kenyon, The theory of an incompressible solid-fluid mixture, Arch. Ration. Mech., 62 (1976), 131–147. |
[13] | D. E. Kenyon, A mathematical model of water flux through aortic tissue, B. Math. Biol., 41 (1979), 79–90. |
[14] | G. Jayaraman, Water transport in the arterial wall: a theoretical study, J. Biomech., 16 (1983), 833–840. |
[15] | R. Jain and G. Jayaraman, A theoretical model for water flux through the arterial wall, J. Biomech. Eng., 109 (1987), 311–317. |
[16] | M. Klanchar and J. M. Tarbell, Modeling water flow through arterial tissue, B. Math. Biol., 49 (1987), 651–669. |
[17] | V. C. Mow and W. M. Lai, Mechanics of animal joints, Annu. Rev. Fluid Mech., 11 (1979), 247–288. |
[18] | W. M. Lai and V. C. Mow, Drag induced compression of articular cartilage during a permeation experiment, Biorheology, 17 (1980), 111–123. |
[19] | M. H. Holmes, Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression, J. Biomech. Eng., 108 (1986), 372–381. |
[20] | A. Ahmed, J. I. Siddique and A. Mahmood, Non-Newtonian flow-induced deformation from pressurized cavities in absorbing porous tissues, Comput. Method. Biomec., 20 (2017), 1464–1473. |
[21] | C. W. J. Oomens, D. H. V. Campen and H. J. Grootenboer, A mixture approach to the mechanics of skin, J. Biomech., 20 (1987), 877–885. |
[22] | T. R. Ford, J. S. Sachs, J. B. Grotberg and M. R. Glucksberg, Mechanics of the perialveolar interstitium of the lung, First World Congress of Biomechanics, La Jolla, 1 (1990), 31. |
[23] | M. H. Friedman, General theory of tissue swelling with application to the corneal stroma, J. Theor. Biol., 30 (1971), 93–109. |
[24] | C. Nicholson, Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity, Brain Res., 333 (1985), 325–329. |
[25] | N. T. M. Eldabe, G. Saddeek and K. A. S. Elagamy, Magnetohydrodynamic flow of a biviscosity fluid through porous medium in a layer of deformable material, J. Porous Media, 14 (2011), 273–283. |
[26] | J. I. Siddique and A. Kara, Capillary rise of magnetohydrodynamics liquid into deformable porous material, J. Appl. Fluid Mech., 9 (2016), 2837–2843. |
[27] | A. Naseem, A. Mahmood, J. I. Siddique and L. Zhao, Infiltration of MHD liquid into a deformable porous material, Results Phys., 8 (2018), 71–75. |
[28] | S. Sreenadh, K. V. Prasad, H. Vaidya, E. Sudhakara, G. Krishna and M. Krishnamurthy, MHD Couette Flow of a Jeffrey Fluid over a Deformable Porous Layer, Int. J. Appl. Comput. Math., 3 (2017), 2125–2138. |
[29] | J. Bagwell, J. Klawitter, B. Sauer and A. Weinstein, A study of bone growth into porous polyethylene, Presented at the Sixth Annual Biomaterials Symposium, Clemson University, Clemson, SC, USA, (1974), 20–24. |
[30] | R. M. Pilliar, H. V. Cameron and I. MacNab, Porous surface layered prosthetic devises, Biomed. Eng., 4 (1975), 12–16. |
[31] | M. L. Bansal, Magneto Therapy, Jain Publishers, New Delhi, 1976. |
[32] | P. N. Tandon, A. Chaurasia and T. Gupta, Comput. Math. Appl., 22 (1991), 33–45. |
[33] | S. I. Barry and G. K. Aldis, Flow-induced deformation from Pressurized cavities in absorbing porous tissues, B. Math. Biol., 54 (1992), 977–997. |
[34] | M. H. Holmes, A theoretical analysis for determining the nonlinear hydraulic permeability of a soft tissue from a permeation experiment, B. Math. Biol., 47 (1985), 669–683. |
[35] | S. I. Barry and G. K. Aldis, Radial flow through deformable porous shells, J. Aust. Math. Soc. B, 34 (1993), 333–354. |
[36] | J. S. Hou, M. H. Holmes,W. M. Lai and V. C. Mow, Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications, J. Biomech. Eng., 111 (1989), 78–87. |
[37] | M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, New York, Dover, 1972. |
[38] | W. E. Schiesser, The numerical method of lines: Integration of partial differential equations, Academic Press, San Diego, 1991. |
[39] | A. Farina, P. Cocito and G. Boretto, Flow in deformable porous media: Modelling an simulations of compression moulding processes, Math. Comput. Model., 26 (1997), 1–15. |
[40] | S. I. Barry and G. K. Aldis, Fluid flow over a thin deformable porous layer, J. Appl. Math. Phys. (ZAMP), 42 (1991), 633–648. |