Citation: Yang Li, Jia Li. Stage-structured discrete-time models for interacting wild and sterile mosquitoes with beverton-holt survivability[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 572-602. doi: 10.3934/mbe.2019028
[1] | Chen Liang, Hai-Feng Huo, Hong Xiang . Modelling mosquito population suppression based on competition system with strong and weak Allee effect. Mathematical Biosciences and Engineering, 2024, 21(4): 5227-5249. doi: 10.3934/mbe.2024231 |
[2] | Liming Cai, Shangbing Ai, Guihong Fan . Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes. Mathematical Biosciences and Engineering, 2018, 15(5): 1181-1202. doi: 10.3934/mbe.2018054 |
[3] | Yang Li, Jia Li . Stage-structured discrete-time models for interacting wild and sterile mosquitoes with beverton-holt survivability. Mathematical Biosciences and Engineering, 2019, 16(2): 572-602. doi: 10.3934/mbe.2019028 |
[4] | Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng . The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio. Mathematical Biosciences and Engineering, 2019, 16(5): 4741-4757. doi: 10.3934/mbe.2019238 |
[5] | Yuanxian Hui, Genghong Lin, Qiwen Sun . Oscillation threshold for a mosquito population suppression model with time delay. Mathematical Biosciences and Engineering, 2019, 16(6): 7362-7374. doi: 10.3934/mbe.2019367 |
[6] | Rajivganthi Chinnathambi, Fathalla A. Rihan . Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia. Mathematical Biosciences and Engineering, 2022, 19(11): 11154-11171. doi: 10.3934/mbe.2022520 |
[7] | Bo Zheng, Lihong Chen, Qiwen Sun . Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model. Mathematical Biosciences and Engineering, 2019, 16(5): 5531-5550. doi: 10.3934/mbe.2019275 |
[8] | Mugen Huang, Zifeng Wang, Zixin Nie . A stage structured model for mosquito suppression with immigration. Mathematical Biosciences and Engineering, 2024, 21(11): 7454-7479. doi: 10.3934/mbe.2024328 |
[9] | Daiver Cardona-Salgado, Doris Elena Campo-Duarte, Lilian Sofia Sepulveda-Salcedo, Olga Vasilieva, Mikhail Svinin . Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains. Mathematical Biosciences and Engineering, 2021, 18(3): 2952-2990. doi: 10.3934/mbe.2021149 |
[10] | Hui Wan, Huaiping Zhu . A new model with delay for mosquito population dynamics. Mathematical Biosciences and Engineering, 2014, 11(6): 1395-1410. doi: 10.3934/mbe.2014.11.1395 |
The study of Hom-algebras can be traced back to Hartwig, Larsson and Silvestrov's work in [1], where the notion of Hom-Lie algebra in the context of q-deformation theory of Witt and Virasoro algebras [2] was introduced, which plays an important role in physics, mainly in conformal field theory. Hom-algebras and Hom-coalgebras were introduced by Makhlouf and Silvestrov [3] as generalizations of ordinary algebras and coalgebras in the following sense: the associativity of the multiplication is replaced by the Hom-associativity and similar for Hom-coassociativity. They also defined the structures of Hom-bialgebras and Hom-Hopf algebras, and described some of their properties extending properties of ordinary bialgebras and Hopf algebras in [4,5]. In [6], Caenepeel and Goyvaerts studied Hom-bialgebras and Hom-Hopf algebras from a categorical view point, and called them monoidal Hom-bialgebras and monoidal Hom-Hopf algebras respectively, which are different from the normal Hom-bialgebras and Hom-Hopf algebras in [4]. Many more properties and structures of Hom-Hopf algebras have been developed, see [7,8,9,10] and references cited therein.
Later, Yau [11,12] proposed the definition of quasitriangular Hom-Hopf algebras and showed that each quasitriangular Hom-Hopf algebra yields a solution of the Hom-Yang-Baxter equation. The Hom-Yang-Baxter equation reduces to the usual Yang-Baxter equation when the twist map is trivial. Several classes of solutions of the Hom-Yang-Baxter equation were constructed from different respects, including those associated to Hom-Lie algebras [11,13,14,15], Drinfelds (co)doubles [16,17,18], and Hom-Yetter-Drinfeld modules [19,20,21,22,23,24,25,26].
It is well-known that classical nonlinear equations in Hopf algebra theory including the quantum Yang-Baxter equation, the Hopf equation, the pentagon equation, and the Long equation. In [27], Militaru proved that each Long dimodule gave rise to a solution for the Long equation. Long dimodules are the building stones of the Brauer-Long group. In the case where H is commutative, cocommutative and faithfully projective, the Yetter-Drinfeld category HHYD is precisely the Long dimodule category HHL. Of course, for an arbitrary H, the categories HHYD and HHL are basically different. In [28], Chen et al. introduced the concept of Long dimodules over a monoidal Hom-bialgebra and discussed its relation with Hom-Long equations. Later, we [29] extended Chen's work to generalized Hom-Long dimodules over monoidal Hom-Hopf algebras and obtained a kind solution for the quantum Yang-Baxter equation. For more details about Long dimodules, see [30,31,32,33] and references cited therein.
The main purpose of this paper is to construct a new braided monoidal category and present solutions for two kinds of nonlinear equations. Different to our previous work in [29], in the present paper we do all the work over Hom-Hopf algebras, which is more unpredictable than the monoidal version. Since Hom-Hopf algebras and monoidal Hom-Hopf algebras are different concepts, it turns out that our definitions, formulas and results are also different from the ones in [29]. Most important, we associate quantum Yang-Baxter equations and Hom-Long equations to the Hom-Long dimodule categories.
This paper is organized as follows. In Section 1, we recall some basic definitions about Hom-(co)modules and (co)quasitriangular Hom-Hopf algebras.
In Section 2, we first introduce the notion of (H,B)-Hom-Long dimodules over Hom-bialgebras (H,α) and (B,β), then we show that the Hom-Long dimodule category BHL forms an autonomous category (see Theorem 2.6) and prove that the category is equivalent to the category of left B∗op⊗H-Hom-modules (see Theorem 2.7).
In Section 3, for a quasitriangular Hom-Hopf algebra (H,R,α) and a coquasitriangular Hom-Hopf algebra (B,⟨|⟩,β), we prove that the Hom-Long dimodule category BHL is a subcategory of the Hom-Yetter-Drinfeld category H⊗BH⊗BHYD (see Theorem 3.5), and show that the braiding yields a solution for the quantum Yang-Baxter equation (see Corollary 3.2).
In Section 4, we prove that the category HM over a triangular Hom-Hopf algebra (resp., HM over a cotriangular Hom-Hopf algebra) is a Hom-Long dimodule subcategory of BHL (see Propositions 4.1 and 4.2). We also show that the Hom-Long dimodule category BHL is symmetric in case (H,R,α) is triangular and (B,⟨|⟩,β) is cotriangular (see Theorem 4.3).
In Section 5, we introduce the notion of (H,α)-Hom-Long dimodules and obtain a solution for the Hom-Long equation (see Theorem 5.10).
Throughout this paper, k is a fixed field. Unless otherwise stated, all vector spaces, algebras, modules, maps and unadorned tensor products are over k. For a coalgebra C, the coproduct will be denoted by Δ. We adopt a Sweedler's notation △(c)=c1⊗c2, for any c∈C, where the summation is understood. We refer to [34,35] for the Hopf algebra theory and terminology.
We now recall some useful definitions in [3,4,5,12,36,37].
Definition 1.1. A Hom-algebra is a quadruple (A,μ,1A,α) (abbr. (A,α)), where A is a k-linear space, μ:A⊗A⟶A is a k-linear map, 1A∈A and α is an endmorphism of A, such that
(HA1)α(aa′)=α(a)α(a′);α(1A)=1A,(HA2)α(a)(a′a″)=(aa′)α(a″);a1A=1Aa=α(a) |
are satisfied for a,a′,a″∈A. Here we use the notation μ(a⊗a′)=aa′.
Definition 1.2. Let (A,α) be a Hom-algebra. A left (A,α)-Hom-module is a triple (M,⊳,ν), where M is a linear space, ⊳:A⊗M⟶M is a linear map, and ν is an endmorphism of M, such that
(HM1)ν(a⊳m)=α(a)⊳ν(m),(HM2)α(a)⊳(a′⊳m)=(aa′)⊳ν(m);1A⊳m=ν(m) |
are satisfied for a,a′∈A and m∈M.
Let (M,⊳M,νM) and (N,⊳N,νN) be two left (A,α)-Hom-modules. Then a linear morphism f:M⟶N is called a morphism of left (A,α)-Hom-modules if f(h⊳Mm)=h⊳Nf(m) and νN∘f=f∘νM.
Definition 1.3. A Hom-coalgebra is a quadruple (C,Δ,ϵ,β) (abbr. (C,β)), where C is a k-linear space, Δ:C⟶C⊗C, ϵ:C⟶k are k-linear maps, and β is an endmorphism of C, such that
(HC1)β(c)1⊗β(c)2=β(c1)⊗β(c2);ϵ∘β=ϵ;(HC2)β(c1)⊗c21⊗c22=c11⊗c12⊗β(c2);ϵ(c1)c2=c1ϵ(c2)=β(c) |
are satisfied for c∈C.
Definition 1.4. Let (C,β) be a Hom-coalgebra. A left (C,β)-Hom-comodule is a triple (M,ρ,μ), where M is a linear space, ρ:M⟶C⊗M (write ρ(m)=m(−1)⊗m(0),∀m∈M) is a linear map, and μ is an endmorphism of M, such that
(HCM1)μ(m)(−1)⊗μ(m)(0)=β(m(−1))⊗μ(m(0)),ϵ(m(−1))m(0)=μ(m);(HCM2)β(m(−1))⊗m(0)(−1)⊗m(0)(0)=m(−1)1⊗m(−1)2⊗μ(m(0)) |
are satisfied for all m∈M.
Let (M,ρM,μM) and (N,ρN,μN) be two left (C,β)-Hom-comodules. Then a linear map f:M⟶N is called a map of left (C,β)-Hom-comodules if f(m)(−1)⊗f(m)(0)=m(−1)⊗f(m(0)) and μN∘f=f∘μM.
Definition 1.5. A Hom-bialgebra is a sextuple (H,μ,1H,Δ,ϵ,γ) (abbr. (H,γ)), where (H,μ,1H,γ) is a Hom-algebra and (H,Δ,ϵ,γ) is a Hom-coalgebra, such that Δ and ϵ are morphisms of Hom-algebras, i.e.,
Δ(hh′)=Δ(h)Δ(h′);Δ(1H)=1H⊗1H;ϵ(hh′)=ϵ(h)ϵ(h′);ϵ(1H)=1. |
Furthermore, if there exists a linear map S:H⟶H such that
S(h1)h2=h1S(h2)=ϵ(h)1HandS(γ(h))=γ(S(h)), |
then we call (H,μ,1H,Δ,ϵ,γ,S) (abbr. (H,γ,S)) a Hom-Hopf algebra.
Definition 1.6. ([36]) Let (H,β) be a Hom-bialgebra, (M,⊳,μ) a left (H,β)-module with action ⊳:H⊗M⟶M,h⊗m↦h⊳m and (M,ρ,μ) a left (H,β)-comodule with coaction ρ:M⟶H⊗M,m↦m(−1)⊗m(0). Then we call (M,⊳,ρ,μ) a (left-left) Hom-Yetter-Drinfeld module over (H,β) if the following condition holds:
(HYD)h1β(m(−1))⊗(β3(h2)⊳m(0)=(β2(h1)⊳m)(−1)h2⊗(β2(h1)⊳m)(0), |
where h∈H and m∈M.
When H is a Hom-Hopf algebra, then the condition (HYD) is equivalent to
(HYD)′ρ(β4(h)⊳m)=β−2(h11β(m(−1)))S(h2)⊗(β3(h12)⊳m0). |
Definition 1.7. ([36]) Let (H,β) be a Hom-bialgebra. A Hom-Yetter-Drinfeld category HHYD is a pre-braided monoidal category whose objects are left-left Hom-Yetter-Drinfeld modules, morphisms are both left (H,β)-linear and (H,β)-colinear maps, and its pre-braiding C−,− is given by
CM,N(m⊗n)=β2(m(−1))⊳ν−1(n)⊗μ−1(m0), | (1.1) |
for all m∈(M,μ)∈HHYD and n∈(N,ν)∈HHYD.
Definition 1.8. A quasitriangular Hom-Hopf algebra is a octuple (H,μ,1H,Δ,ϵ,S,β,R) (abbr. (H,β,R)) in which (H,μ,1H,Δ,ϵ,S,β) is a Hom-Hopf algebra and R=R(1)⊗R(2)∈H⊗H, satisfying the following axioms (for all h∈H and R=r):
(QHA1)ϵ(R(1))R(2)=R(1)ϵ(R(2))=1H,(QHA2)Δ(R(1))⊗β(R(2))=β(R(1))⊗β(r(1))⊗R(2)r(2),(QHA3)β(R(1))⊗Δ(R(2))=R(1)r(1)⊗β(r(2))⊗β(R(2)),(QHA4)Δcop(h)R=RΔ(h),(QHA5)β(R(1))⊗β(R(2))=R(1)⊗R(2), |
where Δcop(h)=h2⊗h1 for all h∈H. A quasitriangular Hom-Hopf algebra (H,R,β) is called triangular if R−1=R(2)⊗R(1).
Definition 1.9. A coquasitriangular Hom-Hopf algebra is a Hom-Hopf algebra (H,β) together with a bilinear form ⟨|⟩ on (H,β) (i.e., ⟨|⟩∈ Hom(H⊗H,k)) such that the following axioms hold:
(CHA1)⟨hg|β(l)⟩=⟨β(h)|l2⟩⟨β(g)|l1⟩,(CHA2)⟨β(h)|gl⟩=⟨h1|β(g)⟩⟨h2|β(l)⟩,(CHA3)⟨h1|g1⟩g2h2=h1g1⟨h2|g2⟩,(CHA4)⟨1|h⟩=⟨h|1⟩=ϵ(h),(CHA5)⟨β(h)|β(g)⟩=⟨h|g⟩, |
for all h,g,l∈H. A coquasitriangular Hom-Hopf algebra (H,⟨|⟩,β) is called cotriangular if ⟨|⟩ is convolution invertible in the sense of ⟨h1|g1⟩⟨g2|h2⟩=ϵ(h)ϵ(g), for all h,g∈H.
In this section, we will introduce the notion of Hom-Long dimodules and prove that the Hom-Long dimodule category is an autonomous category.
Definition 2.1. Let (H,α) and (B,β) be two Hom-bialgebras. A left-left (H,B)-Hom-Long dimodule is a quadruple (M,⋅,ρ,μ), where (M,⋅,μ) is a left (H,α)-Hom-module and (M,ρ,μ) is a left (B,β)-Hom-comodule such that
ρ(h⋅m)=β(m(−1))⊗α(h)⋅m(0), | (2.1) |
for all h∈H and m∈M. We denote by BHL the category of left-left (H,B)-Hom-Long dimodules, morphisms being H-linear B-colinear maps.
Example 2.2. Let (H,α) and (B,β) be two Hom-bialgebras. Then (H⊗B,α⊗β) is an (H,B)-Hom-Long dimodule with left (H,α)-action h⋅(g⊗x)=hg⊗β(x) and left (B,β)-coaction ρ(g⊗x)=x1⊗(α(g)⊗x2), where h,g∈H,x∈B.
Proposition 2.3. Let (M,μ),(N,ν) be two (H,B)-Hom-Long dimodules, then (M⊗N,μ⊗ν) is an (H,B)-Hom-Long dimodule with structures:
h⋅(m⊗n)=h1⋅m⊗h2⋅n,ρ(m⊗n)=β−2(m(−1)n(−1))⊗m(0)⊗n(0), |
for all m∈M,n∈N and h∈H.
Proof. From Theorem 4.8 in [21], (M⊗N,μ⊗ν) is both a left (H,α)-Hom-module and a left (B,β)-Hom-comodule. It remains to check that the compatibility condition (2.1) holds. For any m∈M,n∈N and h∈H, we have
ρ(h⋅(m⊗n))=β((h1⋅m)(−1)(h2⋅n)(−1))⊗(h1⋅m)(0)⊗(h2⋅n)(0)=β−1(m(−1)n(−1))⊗α(h1)⋅m(0)⊗α(h2)⋅n(0)=β((m⊗n)(−1))⊗α(h)⋅((m⊗n)(0)), |
as desired. This completes the proof.
Proposition 2.4. The Hom-Long dimodule category BHL is a monoidal category, where the tensor product is given in Proposition 2.3, the unit I=(k,id), the associator and the constraints are given as follows:
aU,V,W:(U⊗V)⊗W→U⊗(V⊗W),(u⊗v)⊗w→μ−1(u)⊗(v⊗ω(w)),lV:k⊗V→V,k⊗v→kν(v),rV:V⊗k→V,v⊗k→kν(v), |
for u∈(U,μ)∈BHL,v∈(V,ν)∈BHL,w∈(W,ω)∈BHL.
Proof. Straightforward.
Proposition 2.5. Let H and B be two Hom-Hopf algebras with bijective antipodes. For any Hom-Long dimodule (M,μ) in BHL, set M∗=Homk(M,k), with the (H,α)-Hom-module and the (B,β)-Hom-comodule structures:
θM∗:H⊗M∗⟶M∗,(h⋅f)(m)=f(SHα−1(h)⋅μ−2(m)),ρM∗:M∗⟶B⊗M∗,f(−1)⊗f(0)(m)=S−1Bβ−1(m(−1))⊗f(μ−2(m(0))), |
and the Hom-structure map μ∗ of M∗ is μ∗(f)(m)=f(μ−1(m)). Then M∗ is an object in BHL. Moreover, BHL is a left autonomous category.
Proof. It is not hard to check that (M∗,θM∗,μ∗) is an (H,α)-Hom-module and (M∗,ρM∗,μ∗) is a (B,β)-Hom-comodule. Further, for any f∈M∗, m∈M, h∈H, we have
(h⋅f)(−1)⊗(h⋅f)(0)(m)=S−1Bβ−1(m(−1))⊗(h⋅f)(μ−2(m(0)))=S−1Bβ−1(m(−1))⊗f(SHα−1(h)⋅μ−4(m(0))),β(f(−1))⊗(α(h)⋅f(0))(m)=β(f(−1))⊗f(0)(SH(h)⋅μ−2(m))=β(S−1Bβ−2(m(−1)))⊗f(μ−2(SHα(h)⋅μ−2(m(0))))=S−1Bβ−1(m(−1))⊗f(SHα−1(h)⋅μ−4(m(0))). |
Thus M∗∈BHL.
Moreover, for any f∈M∗ and m∈M, one can define the left evaluation map and the left coevaluation map by
evM:f⊗m⟼f(m),coevM:1k⟼∑ei⊗ei, |
where ei and ei are dual bases in M and M∗ respectively. Next, we will show that (M∗,evM,coevM) is the left dual of M.
It is easy to see that evM and coevM are morphisms in BHL. For this, we need the following computation
(rM∘(idM⊗evM)∘aM,M∗,M∘(coevM⊗idM)∘l−1M)(m)=(rM∘(idM⊗evM)∘aM,M∗,M)(∑i(ei⊗ei)⊗μ−1(m))=(rM∘(idM⊗evM))(∑iμ−1(ei)⊗(ei⊗m))=rM(∑iμ−1(ei)⊗ei(m))=rM(μ−1(m)⊗1k)=m. |
Similarly, we get
(lM∗∘(evM⊗idM∗)∘a−1M∗,M,M∗∘(idM∗⊗coevM)∘r−1M∗)(f)=(lM∗∘(evM⊗idM∗)∘a−1M∗,M,M∗)(∑iμ∗−1(f)⊗(ei⊗ei))=(lM∗∘(evM⊗idM∗))(∑if⊗ei)⊗μ∗−1(ei))=lM∗(∑if(ei)⊗μ∗−1(ei))=lM∗(1k⊗μ∗−1(f))=f. |
So BHL admits the left duality. The proof is finished.
Theorem 2.6. The Hom-Long dimodule category BHL is an autonomous category.
Proof. By Proposition 2.5, it is sufficient to show that BHL is also a right autonomous category. In fact, for any (M,μ)∈BHL, its right dual (∗M,~coevM,~evM) is defined as follows:
∙ ∗M=Homk(M,k) as k-modules, with the Hom-module and Hom-comodule structures:
(h⋅f)(m)=f(S−1Hα−1(h)⋅μ−2(m)),f(−1)⊗f(0)(m)=SBβ−1(m(−1))⊗f(μ−2(m(0))), |
where f∈∗M, m∈M, and the Hom-structure map μ∗ of ∗M is μ∗(f)(m)=f(μ−1(m));
∙ The right evaluation map and the right coevaluation map are given by
~evM:m⊗f⟼f(m),~coevM:1k⟼∑ai⊗ai, |
where ai and ai are dual bases of M and ∗M respectively. By similar verification in Proposition 2.5, one may check that BHL is a right autonomous category, as required. This completes the proof.
Recall from [17] that for any finite dimensional Hom-Hopf algebra B, B∗ is also a Hom-Hopf algebra with the following structures
(f∗g)(y):=f(β−2(y1))g(β−2(y2)),ΔB∗(f)(xy):=f(β−2(xy)),1B∗:=ϵ,ϵB∗(f):=f(1H),SB∗:=S∗,αB∗(f):=f∘β−1, |
where x,y∈H, f,g∈B∗.
Theorem 2.7. If B is a finite dimensional Hom-Hopf algebra, then the Hom-Long dimodule category BHL is identified to the category of left B∗op⊗H-Hom-modules, where B∗op⊗H means the usual tensor product Hom-Hopf algebra.
Proof. Define the functor Ψ from B∗op⊗HM to BHL by
Ψ(M):=Mask−module,Ψ(f):=f, |
where (M,μ,⇁) is a B∗op⊗H-Hom-module, f:M→N is a morphism of B∗op⊗H-Hom-modules. Further, the H-action on M is defined by
h⋅m:=(ϵB⊗h)⇁m,forallm∈M,h∈H, |
and the B-coaction on M is given by
m(−1)⊗m(0):=∑ei⊗(ei⊗1H)⇁m, |
where ei and ei are dual bases of B and B∗ respectively.
First, we will show (M,μ,⋅) is a left (H,α)-Hom-module. Actually, for any m∈M, h,g∈H, we have 1H⋅m=(ϵB⊗1H)⇁m=μ(m), and
α(h)⋅(g⋅m)=(ϵB⊗α(h))⇁((ϵB⊗g)⇁m)=(ϵB⊗hg)⇁μ(m)=(hg)⋅μ(m), |
which implies (M,μ,⋅)∈HM.
Second, one can show that (M,μ)∈BM in a similar way.
At last, for any m∈M, h∈H, we have
(h⋅m)(−1)⊗(h⋅m)(0)=∑ei⊗(ei⊗1H)⇁(h⋅m)=∑ei⊗(ei⊗α(h))⇁μ(m)=∑β(ei)⊗((ϵB⊗1H)(ei⊗h)⇁μ(m)=∑β(ei)⊗((ϵB⊗h)(ei⊗1H)⇁μ(m)=∑β(ei)⊗α(h)⋅((ei⊗1H)⇁μ(m))=β(m(−1))⊗α(h)⋅m(0), |
which implies (M,μ)∈BHL.
Conversely, for any object (M,μ), (N,ν), and morphism f:U→V in BHL, one can define a functor Φ from BHL to B∗op⊗HM
Φ(M):=Mask−modules,Φ(f):=f, |
where the (B∗op⊗H,β∗⊗α)-Hom-module structure on M is given by
(p⊗h)⇁m=p(m(−1))h⋅μ−1(m(0)), |
for all p∈B∗,h∈H,m∈M. It is straightforward to check that (M,μ,⇁) is an object in BHL to B∗op⊗HM, and hence Φ is well defined.
Note that Φ and Ψ are inverse with each other. Hence the conclusion holds.
In this section, we will prove that the Hom-Long dimodule category BHL over a quasitriangular Hom-Hopf algebra (H,R,α) and a coquasitriangular Hom-Hopf algebra (B,⟨|⟩,β) is a braided monoidal subcategory of the Hom-Yetter-Drinfeld category H⊗BH⊗BHYD.
Theorem 3.1. Let (H,R,α) be a quasitriangular Hom-Hopf algebra and (B,⟨|⟩,β) a coquasitriangular Hom-Hopf algebra. Then the category BHL is a braided monoidal category with braiding
CM,N:M⊗N→N⊗M,m⊗n→⟨m(−1)|n(−1)⟩R(2)⋅ν−2(n(0))⊗R(1)⋅μ−2(m(0)), | (3.1) |
for all m∈(M,μ)∈BHL and n∈(N,ν)∈BHL.
Proof. We will first show that the braiding CM,N is a morphism in BHL. In fact, for any m∈M,n∈N and h∈H, we have
CM,N(h1⋅m⊗h2⋅n)=⟨(h1⋅m)(−1)|(h2⋅n)(−1)⟩R(2)⋅ν−2(h2⋅n)(0)⊗R(1)⋅μ−2(h1⋅m)(0)(2.1)=⟨β(m(−1))|β(n(−1))⟩R(2)⋅ν−2(α(h2)⋅n(0))⊗R(1)⋅μ−2(α(h1)⋅m(0))(HM2)=⟨m(−1)|n(−1)⟩α−1(R(2)h2)⋅ν−1(n(0))⊗α−1(R(1)h1)⋅μ−1(m(0)),h⋅CM,N(m⊗n)=⟨m(−1)|n(−1)⟩h⋅(R(2)⋅ν−2(n(0))⊗R(1)⋅μ−2(m(0)))=⟨m(−1)|n(−1)⟩h1⋅(α−1(R(2))⋅ν−2(n(0)))⊗h2⋅(α−1(R(1))⋅μ−2(m(0)))(HM2)=⟨m(−1)|n(−1)⟩α−1(h1R(2))⋅ν−1(n(0))⊗α−1(h2R(1))⋅μ−1(m(0))(QHA4)=⟨m(−1)|n(−1)⟩α−1(R(2)h2)⋅ν−1(n(0))⊗α−1(R(1)h1)⋅μ−1(m(0)). |
The third equality holds since ⟨|⟩ is β-invariant and the fifth equality holds since R is α-invariant. So CM,N is left (H,α)-linear. Similarly, one may check that CM,N is left (B,β)-colinear.
Now we prove that the braiding CM,N is natural. For any (M,μ),(M′,μ′), (N,ν),(N′,ν′) ∈BHL, let f:M→M′ and g:N→N′ be two morpshisms in BHL, it is sufficient to verify the identity (g⊗f)∘CM,N=CM′,N′∘(f⊗g). For this purpose, we take m∈M,n∈N and do the following calculation:
(g⊗f)∘CM,N(m⊗n)=⟨m(−1)|n(−1)⟩(g⊗f)(R(2)⋅ν−2(n(0))⊗R(1)⋅μ−2(m(0)))=⟨m(−1)|n(−1)⟩g(R(2)⋅ν−2(n(0)))⊗f(R(1)⋅μ−2(m(0)))=⟨m(−1)|n(−1)⟩R(2)⋅g(ν−2(n(0)))⊗R(1)⋅f(μ−2(m(0))),CM′,N′∘(f⊗g)(m⊗n)=CM′,N′(f(m)⊗g(n))=⟨f(m)(−1)|g(n)(−1)⟩R(2)⋅ν−2(g(n)(0))⊗(R(1)⋅μ−2(f(m)(0))=⟨m(−1)|n(−1)⟩R(2)⋅ν−2(g(n(0)))⊗R(1)⋅μ−2(f(m(0)))=⟨m(−1)|n(−1)⟩R(2)⋅g(ν−2(n(0)))⊗R(1)⋅f(μ−2(m(0))). |
The sixth equality holds since f,g are left (B,β)-colinear. So the braiding CM,N is natural, as needed.
Next, we will show that the braiding CM,N is an isomorphsim with inverse map
C−1M,N:N⊗M→M⊗N,n⊗m→⟨S−1(m(−1))|n(−1)⟩S(R(1))⋅μ−2(m(0))⊗R(2)⋅ν−2(n(0)). |
For any m∈M,n∈N, we have
C−1M,N∘CM,N(m⊗n)=⟨m(−1)|n(−1)⟩C−1M,N(R(2)⋅ν−2(n(0))⊗R(1)⋅μ−2(m(0)))=⟨m(−1)|n(−1)⟩⟨S−1(β−1(m(0)(−1)))|β−1(n(0)(−1))⟩S(r(1))⋅μ−2(α(R(2))⋅μ−2(m(0)(0)))⊗r(2)⋅ν−2(α(R(1))⋅ν−2(n(0)(0)))(HCM2)=⟨β−1(m(−1)1)|β−1(n(−1)1)⟩⟨S−1(β−1(m(−1)2))|β−1(n(−1)2)⟩S(r(1))⋅(α−1(R(2))⋅μ−3(m(0)))⊗r(2)⋅(α−1(R(1))⋅ν−3(n(0)))(HM2)=⟨m(−1)1|n(−1)1⟩⟨S−1(m(−1)2)|n(−1)2⟩α−1(S(r(1))R(2))⋅μ−2(m(0))⊗α−1(r(2)R(1))⋅ν−2(n(0))(CHA1)=⟨S−1(β−1(m(−1)2))β−1(m(−1)1)|β(n(−1))⟩1H⋅μ−2(m(0))⊗1H⋅ν−2(n(0))=⟨β−2(S−1(m(−1)2)m(−1)1)|n(−1)⟩1H⋅μ−2(m(0))⊗1H⋅ν−2(n(0))=⟨ϵ(m(−1))1H|n(−1)⟩μ−1(m(0))⊗ν−1(n(0))=ϵ(m(−1))ϵ(n(−1))μ−1(m(0))⊗ν−1(n(0))=m⊗n. |
The second equality holds since ρ(R(2)⋅ν−2(n(0)))=β−1(n(0)(−1))⊗α(R(2))⋅n(0)(0) and the fifth equality holds since R−1=S(r(1))⊗r(2).
Now let us verify the hexagon axioms (H1,H2) from Section XIII. 1.1 of [38]. We need to show that the following diagram (H1) commutes for any (U,μ),(V,ν),(W,ω)∈BHL:
![]() |
For this purpose, let u∈U,v∈V,w∈W, then we have
aV,U,W∘CU,V⊗W∘aU,V,W((u⊗v)⊗w)=aV,U,W∘CU,V⊗W(μ−1(u)⊗(v⊗ω(w)))=⟨β−1(u(−1))|β−2(v(−1))β−1(w(−1))⟩aV,U,W(R(2)⋅(ν−2⊗ω−2)(v(0)⊗ω(w(0)))⊗R(1)⋅μ−3(u(0)))=⟨β(u(−1))|v(−1)β(w(−1))⟩aV,U,W(R(2)⋅(ν−2(v(0))⊗ω−1(w(0)))⊗R(1)⋅μ−3(u(0)))=⟨β(u(−1))|v(−1)β(w(−1))⟩α−1(R(2)1)⋅ν−3(v(0))⊗(R(2)2⋅ω−1(w(0))⊗α(R(1))⋅μ−2(u(0)))(QHA3)=⟨β(u(−1))|v(−1)β(w(−1))⟩r(2)⋅ν−3(v(0))⊗(α(R(2))⋅ω−1(w(0))⊗(R(1)r(1))⋅μ−2(u(0))) |
and
\begin{eqnarray*} &&(id_{V}{\otimes} C_{U,W})\circ a_{V,U,W}\circ(C_{U,V}{\otimes} id_{W})((u{\otimes} v){\otimes} w)\\ & = &\langle u_{(-1)}|v_{(-1)}\rangle(id_{V}{\otimes} C_{U,W})\circ a_{V,U,W}((R^{(2)}{\cdot} \nu^{-2}(v_{(0)}){\otimes} R^{(1)}{\cdot} \mu^{-2}(u_{(0)})){\otimes} w)\\ & = &\langle u_{(-1)}|v_{(-1)}\rangle(id_{V}{\otimes} C_{U,W}) {\alpha}^{-1}(R^{(2)}){\cdot} \nu^{-3}(v_{(0)}){\otimes}(R^{(1)}{\cdot} \mu^{-2}(u_{(0)}){\otimes} \omega(w))\\ & = &\langle u_{(-1)}|v_{(-1)}\rangle\langle \beta^{-1}(u_{(0)(-1)})|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; {\alpha}^{-1}(R^{(2)}){\cdot} \nu^{-3}(v_{(0)}){\otimes}(r^{(2)}{\cdot}\omega^{-1}(w_{(0)}){\otimes} r^{(1)}{\cdot}\mu^{-2}({\alpha}(R^{(1)}){\cdot} \mu^{-2}(u_{(0)(0)})))\\ &\stackrel{(HCM2)}{ = }&\langle \beta^{-1}(u_{(-1)1})|v_{(-1)}\rangle\langle \beta^{-1}(u_{(-1)2})|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; {\alpha}^{-1}(R^{(2)}){\cdot} \nu^{-3}(v_{(0)}){\otimes}(r^{(2)}{\cdot}\omega^{-1}(w_{(0)}){\otimes}{\alpha}^{-1}(r^{(1)}R^{(1)}){\cdot} \mu^{-2}(u_{(0)}))\\ &\stackrel{(CHA2)}{ = }&\langle u_{(-1)}|{\beta}^{-1}(v_{(-1)})w_{(-1)}\rangle\\ &&\; \; \; \; \; \; {\alpha}^{-1}(R^{(2)}){\cdot} \nu^{-3}(v_{(0)}){\otimes}(r^{(2)}{\cdot}\omega^{-1}(w_{(0)}){\otimes}{\alpha}^{-1}(r^{(1)}R^{(1)}){\cdot} \mu^{-2}(u_{(0)}))\\ & = &\langle \beta(u_{(-1)})|v_{(-1)}\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; R^{(2)}{\cdot} \nu^{-3}(v_{(0)}){\otimes}({\alpha}(r^{(2)}){\cdot} \omega^{-1}(w_{(0)}){\otimes}(r^{(1)}R^{(1)}){\cdot} \mu^{-2}(u_{(0)})) \end{eqnarray*} |
Since r = R , it follows that a_{V, U, W}\circ C_{U, V{\otimes} W}\circ a_{U, V, W} = (id_{V}{\otimes} C_{U, W})\circ a_{V, U, W}\circ(C_{U, V}{\otimes} id_{W}) , that is, the diagram ( H_{1} ) commutes.
Now we check that the diagram ( H_{2} ) commutes for any (U, \mu), (V, \nu), (W, \omega)\in{} ^{B}_{H}\Bbb{L} :
![]() |
In fact, for any u\in U, v\in V, w\in W , we obtain
\begin{eqnarray*} &&a^{-1}_{W,U,V}\circ C_{U{\otimes} V, W}\circ a^{-1}_{U,V,W}(u{\otimes} (v{\otimes} w))\\ & = &a^{-1}_{W,U,V}\circ C_{U{\otimes} V, W}((\mu(u){\otimes} v){\otimes} \omega^{-1}(w))\\ & = &\langle \beta^{-1}(u_{(-1)})\beta^{-1}(v_{(-2)})|\beta^{-1}(w_{(-1)})\rangle a^{-1}_{W,U,V}\\ &&\; \; \; \; \; \; \; \; \; \; (R^{(2)}{\cdot} \omega^{-3}(w_{(0)}){\otimes} R^{(1)}{\cdot} (\mu^{-1}(u_{(0)}){\otimes} \nu^{-2}(v_{(0)})))\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle a^{-1}_{W,U,V}\\ &&\; \; \; \; \; \; \; \; \; \; (R^{(2)}{\cdot} \omega^{-3}(w_{(0)}){\otimes} (R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)}){\otimes} R^{(1)}_{2}{\cdot} \nu^{-2}(v_{(0)})))\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\omega(R^{(2)}{\cdot} \omega^{-2}(w_{(0)})){\otimes} R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}_{2}){\cdot} \nu^{-3}(v_{(0)})\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\alpha^{-1}(R^{(2)}){\cdot}\omega^{-2}(w_{(0)}){\otimes} R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)})){\otimes} \alpha(R^{(1)}_{2}){\cdot} \nu(v_{(0)})\\ &\stackrel{(QHA2)}{ = }&\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\alpha^{-1}(R^{(2)}r^{(2)}){\cdot}\omega^{-2}(w_{(0)}){\otimes} R^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes} \alpha^{-1}(r^{(1)}){\cdot} \nu^{-3}(v_{(0)}). \end{eqnarray*} |
Also we can get
\begin{eqnarray*} &&(C_{U,W}{\otimes} id_{V})\circ a^{-1}_{U,W,V}\circ(id_{U}{\otimes} C_{V,W})(u{\otimes} (v{\otimes} w))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle(C_{U,W}{\otimes} id_{V})\circ a^{-1}_{U,W,V} (u{\otimes} (R^{(2)}{\cdot} \omega^{-2}(w_{(0)}){\otimes} R^{(1)}{\cdot} \nu^{-2}(v_{(0)})))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle(C_{U,W}{\otimes} id_{V}) ((\mu(u){\otimes} R^{(2)}{\cdot}\omega^{-2}(w_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)}))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle\langle \beta(u_{(-1)})|\beta^{-1}(w_{(0)(-1)})\rangle\\ &&\; \; \; \; \; (r^{(2)}{\cdot}\omega^{-2}(\alpha(R^{(2)}){\cdot} \omega^{-2}(w_{(0)(0)})){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)})\\ &\stackrel{(HCM2)}{ = }&\langle v_{(-1)})|\beta^{-1}(w_{(-1)1})\rangle\langle \beta(u_{(-1)})|\beta^{-1}(w_{(-1)2})\rangle\\ &&\; \; \; \; \; (r^{(2)}{\cdot}({\alpha}^{-1}(R^{(2)}){\cdot} \omega^{-3}(w_{(0)})){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}\alpha^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)})\\ &\stackrel{(CHA1)}{ = }&\langle u_{(-1)}\beta^{-1}(v_{(-1)})|w_{(-1)}\rangle\\ &&\; \; \; \; \; (\alpha^{-1}(r^{(2)}R^{(2)}){\cdot} \omega^{-2}(w_{(0)}){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}\alpha^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)}). \end{eqnarray*} |
So the diagram ( H_{2} ) commutes since r = R . This ends the proof.
Corollary 3.2. Under hypotheses of Theorem 3.1, the braiding C is a solution of the quantum Yang-Baxter equation
\begin{eqnarray*} &&(id_{W}{\otimes} C_{U,V})\circ a_{W,U,V}\circ( C_{U,W}{\otimes} id_{V})\circ a^{-1}_{W,V,U}\circ( id_{U}{\otimes} C_{V,W})\circ a_{U,V,W}\nonumber\\ & = &a_{W,V,U}\circ( C_{W,V}{\otimes} id_{U})\circ a^{-1}_{W,V,U}\circ( id_{V}{\otimes} C_{U,W})\circ a_{V,U,W}\circ( C_{U,V}{\otimes} id_{W}). \end{eqnarray*} |
Proof. Straightforward.
Lemma 3.3. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Define a linear map
\begin{eqnarray*} (H{\otimes} B){\otimes} M\rightarrow M,(h{\otimes} x)\rightharpoonup m = \langle x|m_{(-1)}\rangle {\alpha}^{-3}(h){\cdot} \mu^{-1}(m_{(0)}), \end{eqnarray*} |
for any h\in H, x\in B and m\in(M, \mu)\in{}^{B}_{H} \Bbb L . Then (M, \mu) becomes a left (H{\otimes} B) -Hom-module.
Proof. It is sufficient to show that the Hom-module action defined above satisfies Definition 1.2. For any h, g\in H, x, y\in B and m\in M , we have
\begin{eqnarray*} (1_{H}{\otimes} 1_{B})\rightharpoonup m = \langle 1_{B}|m_{(-1)}\rangle 1_{H}{\cdot} \mu^{-1}(m_{(0)}) = \epsilon(m_{(-1)})m_{(0)} = \mu(m). \end{eqnarray*} |
That is, (1_{H}{\otimes} 1_{B})\rightharpoonup m = \mu(m) . For the equality \mu((h{\otimes} x)\rightharpoonup m) = (\alpha(h){\otimes} \beta(x))\rightharpoonup \mu(m) , we have
\begin{eqnarray*} (\alpha(h){\otimes} \beta(x))\rightharpoonup \mu(m) & = &\langle \beta(x)|\beta(m_{(-1)})\rangle \alpha^{-2}(h){\cdot} m_{(0)}\\ & = &\langle x|m_{(-1)}\rangle \alpha^{-2}(h){\cdot} m_{(0)} = \mu((h{\otimes} x)\rightharpoonup m), \end{eqnarray*} |
as required. Finally, we check the expression ((h{\otimes} x)(g{\otimes} y))\rightharpoonup \mu(m) = (\alpha(h){\otimes}\beta(x))\rightharpoonup((g{\otimes} y)\rightharpoonup m) . For this, we calculate
\begin{eqnarray*} &&(\alpha(h){\otimes}\beta(x))\rightharpoonup ((g{\otimes} y)\rightharpoonup m)\\ & = &\langle y|m_{(-1)}\rangle(\alpha(h){\otimes}\beta(x)){\cdot} (\alpha^{-3}(g){\cdot} \mu^{-1}(m_{(0)}))\\ & = &\langle y|m_{(-1)}\rangle\langle \beta(x)|m_{(0)(-1)}\rangle\alpha^{-2}(h){\cdot}(\alpha^{-3}(g){\cdot}\mu^{-2}(m_{(0)(0)}))\\ &\stackrel{(HCM2)}{ = }&\langle y|\beta^{-1}(m_{(-1)1})\rangle\langle x|\beta^{-1}(m_{(-1)2})\rangle \alpha^{-3}(hg){\cdot} m_{(0)}\\ &\stackrel{(CHA1)}{ = }&\langle xy|\beta(m_{(-1)})\rangle\alpha^{-3}(hg){\cdot} m_{(0)}\\ & = &((h{\otimes} x)(g{\otimes} y))\rightharpoonup \mu(m). \end{eqnarray*} |
So (M, \mu) is a left (H{\otimes} B) -Hom-module. The proof is completed.
Lemma 3.4. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Define a linear map
\begin{eqnarray*} \overline{\rho}: M\rightarrow (H{\otimes} B){\otimes} M,\; \overline{\rho}(m) = m_{[-1]}{\otimes} m_{[0]} = R^{(2)} {\otimes} \beta^{-3}(m_{(-1)}){\otimes} R^{(1)}{\cdot} \mu^{-1}(m_{(0)}), \end{eqnarray*} |
for any m\in (M, \mu) . Then (M, \mu) becomes a left (H{\otimes} B) -Hom-comodule.
Proof. We first show that \overline{\rho} satisfies Eq (HCM2). On the one side, we have
\begin{eqnarray*} &&\Delta(m_{[-1]}){\otimes} \mu(m_{[0]})\\ & = &( R^{(2)}_{1} {\otimes}\beta^{-3}(m_{(-1)1})){\otimes}( R^{(2)}_{2} {\otimes}\beta^{-3}(m_{(-1)2})){\otimes}\alpha(R^{(1)}){\cdot} m_{(0)}\\ & = &({\alpha}(r^{(2)}){\otimes}\beta^{-2}(m_{(-1)})){\otimes}({\alpha}(R^{(2)}){\otimes}\beta^{-3}(m_{(0)(-1)})){\otimes}\alpha(R^{(1)})(r^{(1)}{\cdot} \mu^{-2}(m_{(0)(0)})). \end{eqnarray*} |
On the other side, we have
\begin{eqnarray*} &&\; \; (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \overline{\rho}(m_{[0]})\\ && = ({\alpha}(r^{(2)}){\otimes} {\beta}^{-2}(m_{(-1)})){\otimes}(R^{(2)} {\otimes} \beta^{-3}( ( r^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )_{(-1)} ) {\otimes} R^{(1)} \\ &&\; \; \; \; \; \; \; \; \; \; {\cdot} \mu^{-1}(( r^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )_{(0)} ) \\ && = ({\alpha}(r^{(2)}){\otimes}\beta^{-2}(m_{(-1)})){\otimes}(R^{(2)}{\otimes}\beta^{-3}(m_{(0)(-1)})){\otimes} R^{(1)} {\cdot} (r^{(1)}{\cdot} \mu^{-2}(m_{(0)(0)})). \end{eqnarray*} |
Since R is \alpha -invariant, we have \Delta(m_{[-1]}){\otimes} \mu(m_{[0]}) = (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \overline{\rho}(m_{[0]}) , as needed.
For Eq (HCM1), we have
\begin{eqnarray*} (\epsilon_{H}{\otimes}\epsilon_{B})(m_{[-1]})m_{[0]} & = &\epsilon_{H}(R^{(2)})\epsilon_{B}(m_{(-1)})R^{(1)}{\cdot} \mu^{-1}(m_{(0)})\\ & = &1_{H}{\cdot} m = \mu(m),\\ (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \mu(m_{[0]}) & = &(\alpha(R^{(2)}){\otimes} \beta^{-2}(m_{(-1)})){\otimes} \mu(R^{(1)}{\cdot} \mu^{-1}(m_{(0)}))\\ & = & R^{(2)} {\otimes} \beta^{-3}(\beta(m_{(-1)})){\otimes} R^{(1)}{\cdot} \mu^{-1}(\mu(m_{(0)}))\\ & = & \overline{\rho}(\mu(m)), \end{eqnarray*} |
as desired. And this finishes the proof.
Theorem 3.5. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Then the Hom-Long dimodules category ^{B}_{H} \Bbb L is a monoidal subcategory of Hom-Yetter-Drinfeld category ^{H{\otimes} B}_{H{\otimes} B}\Bbb {YD} .
Proof. Let m\in(M, \mu)\in {}^{B}_{H}\mathcal{L} and h\in H . Here we first note that \rho(h{\cdot} \mu^{-1}(m_{(0)})) = m_{(0)(-1)}{\otimes}\alpha(h){\cdot} \mu^{-1}(m_{(0)(0)}) . It is sufficient to show that the left (H{\otimes} B) -Hom-module action in Lemma 3.3 and the left (H{\otimes} B) -Hom-comodule structure in Lemma 3.4 satisfy the compatible condition Eq (HYD). Indeed, for any h \in H , x \in B , m \in M , we have
\begin{eqnarray*} &&(h_1 {\otimes} x_1)({\alpha} {\otimes} {\beta} )(m_{[-1]}) {\otimes} ({\alpha}^3(h_2) {\otimes} {\beta}^3(x_2))\rightharpoonup m_{[0]} \\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-2}(m_{(-1)}) {\otimes} \langle {\beta}^3(x_2) | (R^{(1)} {\cdot} \mu^{-1}(m_{(0)}))_{(-1)} \rangle h_2 {\cdot} \mu^{-1}( (R^{(1)} {\cdot} \mu^{-1}(m_{(0)}))_{(0)} )\\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-3}(m_{(-1)1}) {\otimes} \langle {\beta}^3(x_2) | m_{(-1)2} \rangle h_2 {\cdot} ( R^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )\\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-3}(m_{(-1)1}) {\otimes} \langle x_2 | {\beta}^{-3}(m_{(-1)2}) \rangle {\alpha}^{-1}(h_2 {\alpha}(R^{(1)}) ) {\cdot} m_{(0)} \\ & = & R^{(2)} h_2 {\otimes} {\beta}^{-3}(m_{(-1)2}) x_2 \langle x_1 | {\beta}^{-3}(m_{(-1)1}) \rangle {\otimes} ({\alpha}^{-1}(R^{(1)}) {\alpha}^{-1}(h_1)) {\cdot} m_{(0)} \\ & = & \langle {\alpha}^2(x_1) | m_{(-1)} \rangle R^{(2)} h_2 {\otimes} {\beta}^{-3}(m_{(0)(-1)}) x_2 {\otimes} ({\alpha}^{-1}(R^{(1)}) {\alpha}^{-1}(h_1)) {\cdot} \mu^{-1}(m_{(0)(0)}) \\ & = & \langle {\alpha}^2(x_1) | m_{(-1)} \rangle (R^{(2)} {\otimes} {\beta}^{-3}( {{\alpha}^{-1}(h_1) {\cdot} \mu^{-1}(m_{(0)}) }_{(-1)} ) )(h_2 {\otimes} x_2) \\ &&\; \; \; \; \; \; \; \; \; \; \; \; {\otimes} R^{(1)} {\cdot} \mu^{-1}({{\alpha}^{-1}(h_1) {\cdot} \mu^{-1}(m_{(0)}) }_{(0)}) \\ & = & {({\alpha}^2(h_1) {\otimes} {\beta}^2(x_1))\rightharpoonup m}_{[-1]} (h_2 {\otimes} x_2) {\otimes} {({\alpha}^2(h_1) {\otimes} {\beta}^2(x_1))\rightharpoonup m}_{[0]}. \end{eqnarray*} |
So (M, \mu)\in{}^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} . The proof is completed.
Proposition 3.6. Under hypotheses of Theorem 3.5, ^{B}_{H}\Bbb{L} is a braided monoidal subcategory of ^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} .
Proof. It is sufficient to show that the braiding in the category ^{B}_{H}\Bbb{L} is compatible to the braiding in ^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} . In fact, for any m\in (M, \mu) and n\in (N, \nu) , we have
\begin{eqnarray*} C_{M,N}(m{\otimes} n) & = & ({\alpha}^2(R^{(2)}) {\otimes} {\beta}^{-1}(m_{(-1)}))\rightharpoonup \nu^{(-1)}(n) {\otimes} {\alpha}^{-1}(R^{(1)}) {\cdot} \mu^{-2}(m_{(0)}) \\ & = & \langle {\beta}^{-1}(m_{(-1)}) | {\beta}^{-1}(n_{(-1)}) \rangle {\alpha}^{-1}(R^{(2)}) {\cdot} \nu^{-2}(n_{(0)}) {\otimes} {\alpha}^{-1}(R^{(1)}) {\cdot} \mu^{-2}(m_{(0)}) \\ & = & \langle m_{(-1)} | n_{(-1)} \rangle R^{(2)} {\cdot} \nu^{-2}(n_{(0)}) {\otimes} R^{(1)} {\cdot} \mu^{-2}(m_{(0)}), \end{eqnarray*} |
as desired.This finishes the proof.
In this section, we obtain a sufficient condition for the Hom-Long dimodule category ^{B}_{H} \Bbb L to be symmetric.
Let \mathcal{C} be a monoidal category and C a braiding on \mathcal{C} . The braiding C is called a symmetry [38,39] if C_{Y, X}\circ C_{X, Y} = id_{X\otimes Y} for all X, Y\in \mathcal{C} , and the category \mathcal{C} is called symmetric.
Proposition 4.1. Let (H, R, \alpha) be a triangular Hom-Hopf algebra and (B, \beta) a Hom-Hopf algebra. Then the category _{H} \Bbb M of left (H, \alpha) -Hom-modules is a symmetric subcategory of ^{B}_{H} \Bbb L under the left (B, \beta) -comodule structure \rho(m) = 1_{B}\otimes \mu(m) , where m\in (M, \mu)\in{}_{H} \Bbb M , and the braiding is defined as
\begin{eqnarray*} C_{M,N}: M{\otimes} N\rightarrow N{\otimes} M, m{\otimes} n\rightarrow R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m), \end{eqnarray*} |
for all m\in (M, \mu)\in{}_{H} \Bbb M, n\in (N, \nu)\in{}_{H} \Bbb M.
Proof. It is clear that (M, \rho, \mu) is a left (B, \beta) -Hom-comodule under the left (B, \beta) -comodule structure given above. Now we check that the left (B, \beta) -comodule structure satisfies the compatible condition Eq (2.1). For this purpose, we take h\in H, m\in(M, \mu)\in{}_{H} \Bbb M , and calculate
\begin{eqnarray*} \rho(h{\cdot} m) = 1_{B}\otimes \mu(h{\cdot} m) = 1_{B}\otimes \alpha(h){\cdot}\mu(m) = \beta(m_{(-1)})\otimes \alpha(h){\cdot} m_{(0)}. \end{eqnarray*} |
So, Eq (2.1) holds. That is, (M, \rho, \mu) is an (H, B) -Hom-Long dimodule.
Next we verify that any morphism in _{H} \Bbb M is left (B, \beta) -colinear, too. Indeed, for any m\in (M, \mu)\in{}_{H} \Bbb M and n\in (N, \nu)\in{}_{H} \Bbb M . Assume that f: (M, \mu)\rightarrow (N, \nu) is a morphism in _{H} \Bbb M , then
\begin{eqnarray*} (id_{B}\otimes f)\rho(m) = 1_{B}\otimes f(\mu(m)) = 1_{B}\otimes\nu(f(m)) = \rho(f(m)). \end{eqnarray*} |
So f is left (B, \beta) -colinear, as desired. Therefore, _{H} \Bbb M is a subcategory of ^{B}_{H} \Bbb L .
Finally, we prove that _{H} \Bbb M is a symmetric subcategory of ^{B}_{H} \Bbb L . Since C_{M, N}(m{\otimes} n) = R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m), for all m\in (M, \mu)\in{}_{H} \Bbb M and n\in (N, \nu)\in{}_{H} \Bbb M , we have
\begin{eqnarray*} C_{N,M}\circ C_{M,N}(m{\otimes} n) & = &C_{N,M}(R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m))\\ & = &r^{(2)}{\cdot}\mu^{-1}(R^{(1)}{\cdot} \mu^{-1}(m)){\otimes} r^{(1)}{\cdot}\nu^{-1}(R^{(2)}{\cdot} \nu^{-1}(n))\\ & = &r^{(2)}{\cdot}({\alpha}^{-1}(R^{(1)}){\cdot} \mu^{-2}(m)){\otimes} r^{(1)}{\cdot}({\alpha}^{-1}(R^{(2)}){\cdot} \nu^{-2}(n))\\ & = &\alpha^{-1}(r^{(2)}R^{(1)}){\cdot} \mu^{-1}(m){\otimes} \alpha^{-1}(r^{(1)}R^{(2)}){\cdot} \nu^{-1}(n)\\ & = &1_{H}{\cdot} \mu^{-1}(m){\otimes} 1_{H}{\cdot} \nu^{-1}(n) = m{\otimes} n. \end{eqnarray*} |
It follows that the braiding C_{M, N} is symmetric. The proof is completed.
Proposition 4.2. Let (B, \langle|\rangle, \beta) be a cotriangular Hom-Hopf algebra and (H, \alpha) a Hom-Hopf algebra. Then the category ^{B} \Bbb M of left (B, \beta) -Hom-comodules is a symmetric subcategory of ^{B}_{H} \Bbb L under the left (H, \alpha) -module action h{\cdot} m = \epsilon(h)\mu(m) , where h\in H, m\in (M, \mu)\in{}^{B} \Bbb M , and the braiding is given by
\begin{eqnarray*} C_{M,N}: M{\otimes} N\rightarrow N{\otimes} M, m{\otimes} n\rightarrow \langle m_{(-1)}|n_{(-1)}\rangle \nu^{-2}(n_{(0)}){\otimes} \mu^{-2}(m_{(0)}), \end{eqnarray*} |
for all m\in (M, \mu)\in{}^{B} \Bbb M, n\in (N, \nu)\in{}^{B} \Bbb M.
Proof. We first show that the left (H, \alpha) -module action defined above forces (M, \mu) to be a left (H, \alpha) -module, but this is easy to check. For the compatible condition Eq (2.1), we take h\in H, m\in(M, \mu)\in{}^{B} \Bbb M and calculate as follows:
\begin{eqnarray*} \rho(h{\cdot} m) = 1_{B}{\otimes}\mu(h{\cdot} m) = 1_{B}{\otimes}\epsilon(h)\mu( m) = \beta(m_{(-1)})\otimes \alpha(h){\cdot} m_{(0)}. \end{eqnarray*} |
So, Eq (2.1) holds, as required. Therefore, (M, \rho, \mu) is an (H, B) -Hom-Long dimodule.
Now we verify that any morphism in ^{B} \Bbb M is left (H, \alpha) -linear, too. Indeed, for any m\in (M, \mu)\in{}^{B} \Bbb M and n\in (N, \nu)\in{}^{B} \Bbb M . Assume that f: (M, \mu)\rightarrow (N, \nu) is a morphism in ^{B} \Bbb M , then
\begin{eqnarray*} f(h{\cdot} m) = f(\epsilon(h)\mu(m)) = \epsilon(h)\mu(f(m)) = h{\cdot} f(m). \end{eqnarray*} |
So f is left (H, \alpha) -linear, as desired. Therefore, ^{B} \Bbb M is a subcategory of ^{B}_{H} \Bbb L .
Finally, we show that ^{B} \Bbb M is a symmetric subcategory of ^{B}_{H} \Bbb L . Since C_{M, N}(m{\otimes} n) = \langle m_{(-1)}|n_{(-1)}\rangle \nu^{-1}(n_{(0)}){\otimes} \mu^{-1}(m_{(0)}), for all m\in (M, \mu)\in{}^{B} \Bbb M and n\in (N, \nu)\in{}^{B} \Bbb M , then
\begin{eqnarray*} &&C_{N,M}\circ C_{M,N}(m{\otimes} n)\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle C_{N,M}(\nu^{-1}(n_{(0)}){\otimes} \mu^{-1}(m_{(0)}))\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle\langle {\beta}^{-1}(n_{(0)(-1)})|{\beta}^{-1}(m_{0(-1)})\rangle(\mu^{-2}(m_{(0)(0)}){\otimes} \nu^{-2}(n_{(0)(0)})\\ & = &\langle \beta^{-1}(m_{(-1)1})|\beta^{-1}(n_{(-1)1})\rangle\langle {\beta}^{-1}(n_{(-1)2})|{\beta}^{-1}(m_{(-1)2})\rangle\mu^{-1}(m_{(0)}){\otimes} \nu^{-1}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)})\mu^{-1}(m_{(0)}){\otimes} \nu^{-1}(n_{(0)}) = m{\otimes} n, \end{eqnarray*} |
where the fourth equality holds since \langle | \rangle is {\beta} -invariant. It follows that the braiding C_{M, N} is symmetric. The proof is completed.
Theorem 4.3. Let (H, \alpha) be a triangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a cotriangular Hom-Hopf algebra. Then the category ^{B}_{H} \Bbb L is symmetric.
Proof. For any m\in (M, \mu)\in{}^{B}_{H} \Bbb L and n\in (N, \nu)\in{}^{B}_{H} \Bbb L , we have
\begin{eqnarray*} &&C_{N,M}\circ C_{M,N}(m{\otimes} n)\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle C_{N,M}(R^{(2)}{\cdot} \nu^{-2}(n_{(0)}){\otimes} R^{(1)}{\cdot} \mu^{-2}(m_{(0)}))\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle\langle \beta(n_{(0)(-1)})|\beta(m_{(0)(-1)})\rangle \\ &&\; \; \; \; \; \; \; \; r^{(2)}{\cdot}\mu^{-2}(\alpha(R^{(1)}){\cdot}\mu^{-2}( m_{(0)(0)})){\otimes} r^{(1)}{\cdot}\nu^{-2}(\alpha(R^{(2)}){\cdot} \nu^{-2}(n_{(0)(0)}))\\ & = &\langle \beta^{-1}(m_{(-1)1})|\beta^{-1}(n_{(-1)1})\rangle\langle \beta^{-1}(n_{(-1)2})|\beta^{-1}(m_{(-1)2})\rangle\\ &&\; \; \; \; \; \; \; \; \alpha^{-1}(r^{(2)}R^{(1)}){\cdot} \mu^{-2}(m_{(0)}){\otimes}\alpha^{-1}(r^{(1)}R^{(2)}){\cdot} \nu^{-2}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)}) 1_{H}{\cdot} \mu^{-2}(m_{(0)}){\otimes} 1_{H}{\cdot} \nu^{-2}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)}) \mu^{-1}(m_{(0)}){\otimes}\nu^{-1}(n_{(0)})\\ & = &m{\otimes} n, \end{eqnarray*} |
as desired. This finishes the proof.
In this section, we will present a kind of new solutions of the Hom-Long equation.
Definition 5.1. Let (H, \alpha) be a Hom-bialgebra and (M, \mu) a Hom-module over (H, {\alpha}) . Then R\in End(M{\otimes} M) is called the solution of the Hom-Long equation if it satisfies the nonlinear equation:
\begin{eqnarray} R^{12}\circ R^{23} = R^{23}\circ R^{12}, \end{eqnarray} | (5.1) |
where R^{12} = R{\otimes}\mu, R^{23} = \mu{\otimes} R .
Example 5.2. If R\in End(M{\otimes} M) is invertible, then it is easy to see that R is a solution of the Hom-Long equation if and only if R^{-1} is too.
Example 5.3. Let (M, \mu) be an (H, {\alpha}) -Hom-module with a basis \{m_1, m_2, \cdots, m_n\} . Assume that \mu is given by \mu(m_i) = a_im_i , where a_i\in k, \; i = 1, 2, \cdots, n . Define a map
\begin{eqnarray*} R:\; M{\otimes} M\rightarrow M{\otimes} M,\; \; R(m_i{\otimes} m_j) = b_{ij}m_i{\otimes} m_j, \end{eqnarray*} |
where b_{ij}\in k, \; i, j = 1, 2, ,\cdots, n. Then R is a solution of Eq (5.1). Furthermore, if a_i = 1 , for all i = 1, 2, \cdots, n , then R is a solution of the classical Long equation.
Proposition 5.4. Let (M, \mu) be an (H, {\alpha}) -Hom-module with a basis \{m_1, m_2, \cdots, m_n\} . Assume that R, S\in End(M{\otimes} M, \mu{\otimes}\mu^{-1}) given by the matrix formula
\begin{eqnarray*} R(m_k{\otimes} m_l) = x_{kl}^{ij}m_i{\otimes} \mu^{-1}(m_j),\; \; S(m_k{\otimes} m_l) = y_{kl}^{ij}m_i{\otimes} \mu^{-1}(m_j), \end{eqnarray*} |
and \mu(m_l) = z_{l}^{i}m_i , where x_{kl}^{ij}, y_{kl}^{ij}, z_{l}^{i}\in k . Then S^{12}\circ R^{23} = R^{23}\circ S^{12} if and only if
\begin{eqnarray*} z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}y_{uv}^{ij}, \end{eqnarray*} |
for all k, p, q, u, v, w = 1, 2, \cdots, n . In particular, R is a solution of the Hom-Long equation if and only if
\begin{eqnarray*} z_{u}^{i}x_{vw}^{jk}x_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}x_{uv}^{ij}. \end{eqnarray*} |
Proof. According to the definition of R, S, \mu , we have
\begin{eqnarray*} S^{12}\circ R^{23}(m_{u}{\otimes} m_{v}{\otimes} m_{w}) & = &S^{12}(z_{u}^{i}m_{i}{\otimes} x_{vw}^{jk}m_{j}{\otimes} \mu^{-1}(m_{k}))\\ & = &z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq}(m_{p}{\otimes} \mu^{-1}(m_{q}){\otimes} m_{k}),\\ R^{23}\circ S^{12}(m_{u}{\otimes} m_{v}{\otimes} m_{w}) & = &R^{23}(y_{uv}^{ij}m_{i}{\otimes}\mu^{-1}(m_{j}){\otimes} m_{w})\\ & = &y_{uv}^{ij}z_{i}^{p}x_{jw}^{qk}(m_{p}{\otimes} \mu^{-1}(m_{q}){\otimes} m_{k}). \end{eqnarray*} |
It follows that S^{12}\circ R^{23} = R^{23}\circ S^{12} if and only if z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}y_{uv}^{ij}. Furthermore, R^{12}\circ R^{23} = R^{23}\circ R^{12} if and only if z_{u}^{i}x_{vw}^{jk}x_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}x_{uv}^{ij}. The proof is completed.
In the following proposition, we use the notation: for any F\in End(M{\otimes} M) , we denote F^{12} = F{\otimes} \mu, F^{23} = \mu{\otimes} F, F^{13} = (id{\otimes}\tau)\circ (F {\otimes} \mu)\circ (id{\otimes} \tau) , and \tau^{(123)}(x{\otimes} y{\otimes} z) = (z, x, y).
Proposition 5.5. Let (M, \mu) be an (H, {\alpha}) -Hom-module and R\in End(M{\otimes} M) . The following statements are equivalent:
(1) R is a solution of the Hom-Long equation.
(2) U = \tau\circ R is a solution of the equation:
U^{13}\circ U^{23} = \tau^{(123)}\circ U^{13}\circ U^{12}. |
(3) T = R\circ\tau is a solution of the equation:
T^{12}\circ T^{13} = T^{23}\circ T^{13}\circ\tau^{(123)}. |
(4) W = \tau\circ R \circ \tau is a solution of the equation:
\tau^{(123)}\circ W^{23}\circ W^{13} = W^{12}\circ W^{13}\circ\tau^{(123)}. |
Proof. We just prove (1)\Leftrightarrow (2) , and similar for (1)\Leftrightarrow (3) and (1)\Leftrightarrow (4). Since R = \tau\circ U , R is a solution of the Hom-Long equation if and only if R^{12}\circ R^{23} = R^{23}\circ R^{12} , that is,
\begin{eqnarray} \tau^{12}\circ U^{12}\circ \tau^{23}\circ U^{23} = \tau^{23}\circ U^{23}\circ\tau^{12}\circ U^{12}. \end{eqnarray} | (5.2) |
While \tau^{12}\circ U^{12}\circ \tau^{23} = \tau^{23}\circ\tau^{13}\circ U^{13} and \tau^{23}\circ U^{23}\circ\tau^{12} = \tau^{23}\circ\tau^{12}\circ U^{13} , (5.2) is equivalent to
\tau^{23}\circ \tau^{13}\circ U^{13}\circ U^{23} = \tau^{23}\circ\tau^{12}\circ U^{13}\circ U^{12}, |
which is equivalent to U^{13}\circ U^{23} = \tau^{(123)}\circ U^{13}\circ U^{12} from the fact \tau^{23}\circ\tau^{12} = \tau^{(123)} .
Next we will present a new solution for Hom-Long equation by the Hom-Long dimodule structures. For this, we give the notion of (H, {\alpha}) -Hom-Long dimodules.
Definition 5.6. Let (H, \alpha) be a Hom-bialgebra. A left-left (H, {\alpha}) -Hom-Long dimodule is a quadruple (M, {\cdot}, \rho, \mu) , where (M, {\cdot}, \mu) is a left (H, \alpha) -Hom-module and (M, \rho, \mu) is a left (H, \alpha) -Hom-comodule such that
\begin{eqnarray} \rho(h{\cdot} m) = {\alpha}(m_{(-1)}){\otimes} \alpha(h){\cdot} m_{0}, \end{eqnarray} | (5.3) |
for all h\in H and m\in M .
Remark 5.7. Clearly, left-left (H, {\alpha}) -Hom-Long dimodules is a special case of (H, B) -Hom-Long dimodules in Definition 2.1 by setting (H, {\alpha}) = (B, {\beta}).
Example 5.8. Let (H, {\alpha}) be a Hom-bialgebra and (M, {\cdot}, \mu) be a left (H, {\alpha}) -Hom-module. Define a left (H, {\alpha}) -Hom-module structure and a left (H, {\alpha}) -Hom-comodule structure on (H{\otimes} M, {\alpha}{\otimes} \mu) as follows:
\begin{eqnarray*} h{\cdot}(g{\otimes} m) = {\alpha}(g){\otimes} h{\cdot}\mu(m), \; \; \rho(g{\otimes} m) = g_1{\otimes} g_2{\otimes}\mu(m), \end{eqnarray*} |
for all h, g\in H and m\in M . Then (H{\otimes} M, {\alpha}{\otimes} \mu) is an (H, {\alpha}) -Hom-Long dimodule.
Example 5.9. Let (H, {\alpha}) be a Hom-bialgebra and (M, \rho, \mu) be a left (H, {\alpha}) -Hom-comodule. Define a left (H, {\alpha}) -Hom-module structure and be a left (H, {\alpha}) -Hom-comodule structure on (H{\otimes} M, {\alpha}{\otimes} \mu) as follows:
\begin{eqnarray*} h{\cdot}(g{\otimes} m) = hg{\otimes}\mu(m), \; \; \rho(g{\otimes} m) = m_{(-1)}{\otimes} {\alpha}(g){\otimes} m_0, \end{eqnarray*} |
for all h, g\in H and m\in M . Then (H{\otimes} M, {\alpha}{\otimes} \mu) is an (H, {\alpha}) -Hom-Long dimodule.
Theorem 5.10. Let (H, {\alpha}) be a Hom-bialgebra and (M, {\cdot}, \rho, \mu) be a (H, {\alpha}) -Hom-Long dimodule. Then the map
\begin{eqnarray} R_{M}: M{\otimes} M\rightarrow M{\otimes} M,\; \; \; \; m{\otimes} n\mapsto n_{(-1)}{\cdot} m {\otimes} n_0, \end{eqnarray} | (5.4) |
is a solution of the Hom-Long equation, for any m, n\in M.
Proof. For any l, m, n\in M , we calculate
\begin{eqnarray*} R_{M}^{12}\circ R_{M}^{23}(l{\otimes} m{\otimes} n) & = &R_{M}^{12}(\mu(l){\otimes} n_{(-1)}{\cdot} m{\otimes} n_0)\\ & = &(n_{(-1)}{\cdot} m)_{(-1)}{\cdot}\mu(l){\otimes}(n_{(-1)}{\cdot} m)_{0}{\otimes} \mu(n_0)\\ & = &{\alpha}(m_{(-1)}){\cdot}\mu(l){\otimes}{\alpha}(n_{(-1)}){\cdot} m_{0}{\otimes}\mu(n_0),\\ R_{M}^{23}\circ R_{M}^{12}(l{\otimes} m{\otimes} n) & = &R_{M}^{23}(m_{(-1)}{\cdot} l{\otimes} m_0{\otimes} \mu(n))\\ & = &\mu(m_{(-1)}{\cdot} l){\otimes}{\alpha}(n_{(-1)})){\cdot} m_0{\otimes}\mu(n_0)\\ & = &{\alpha}(m_{(-1)}){\cdot}\mu(l){\otimes}{\alpha}(n_{(-1)}){\cdot} m_{0}{\otimes}\mu(n_0). \end{eqnarray*} |
So we have R_{M}^{12}\circ R_{M}^{23} = R_{M}^{23}\circ R_{M}^{12} , as desired. And this finishes the proof.
The work of S. Wang is supported by the Anhui Provincial Natural Science Foundation (No. 1908085MA03) and the Key University Science Research Project of Anhui Province (No. KJ2020A0711). The work of X. Zhang is supported by the NSF of China (No. 11801304) and the Young Talents Invitation Program of Shandong Province. The work of S. Guo is supported by the NSF of China (No. 12161013) and Guizhou Provincial Science and Technology Foundation (No. [2019]1050).
The authors declare there is no conflict of interest.
[1] | L. Alphey, M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service and S. L. Dobson, Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector-Borne Zoonot., 10 (2010), 295–311. |
[2] | AMCA, Life Cycle. Available from: http://www.mosquito.org/page/lifecycle. |
[3] | B. Anderson, J. Jackson and M. Sitharam, Descartes's rule of signs revisited, Amer. Math. Monthly 105 (1998), 447–451. |
[4] | H. J. Barclay, The sterile insect release method for species with two-stage life cycles, Res. Popul. Ecol., 21 (1980), 165–180. |
[5] | H. J. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol., 24 (1982), 405– 416. |
[6] | H. J. Barclay, Mathematical models for the use of sterile insects, in Sterile Insect Technique, Principles and Practice in Area-Wide Integrated Pest Management, V. A. Dyck, J. Hendrichs, and A. S. Robinson , (Eds. Springer, Heidelberg), (2005), 147–174. |
[7] | H. J. Barclay and M. Mackuer, The sterile insect release method for pest control: a density dependent model, Environ. Entomol., 9 (1980), 810–817. |
[8] | A. C. Bartlett and R. T. Staten, Sterile Insect Release Method and other Genetic Control Strategies, Radcliffe's IPM World Textbook, 1996, available from: http://ipmworld.umn.edu/chapters/bartlett.htm. |
[9] | N. Becker, Mosquitoes and Their Control, Kluwer Academic/Plenum, New York, 2003. |
[10] | M. Q. Benedict and A. S. Robinson, The first releases of transgenic mosquitoes: an argument for the sterile insect technique, Trends Parasitol., 19 (2003), 349–55. |
[11] | R. J. H. Beverton and S. J. Holt, On the Dynamics of Exploited Fish Populations, Springer Science and Business Media, Jun 30, 1993. |
[12] | M. Bohner and H. Warth, The Beverton-Holt dynamic equation, Appl. Anal., 86 (2007), 1007– 1015. |
[13] | L. M. Cai, S. B. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM, J. Appl. Math., 74 (2014), 1786–1809. |
[14] | J. M. Cushing and J. Li, On Ebenman's model for the dynamics of a population with competing juveniles and adults, Bull. Math. Biol., 51 (1989), 687–713. |
[15] | C. Dye, Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference, Ecol. Entomol., 7 (1982), 39–46. |
[16] | S. Elaydi, Discrete Chaos: With Applications in Science and Engineering, 2nd edition, Boca Raton, CRC Press, 2007. |
[17] | K. R. Fister, M. L. McCarthy, S. F. Oppenheimer and Craig Collins, Optimal control of insects through sterile insect release and habitat modification, Math. Biosci., 244 (2013), 201–212. |
[18] | J. C. Floresa, A mathematical model for wild and sterile species in competition: immigration, Physica A, 328 (2003), 214–224. |
[19] | R. M. Gleiser, J. Urrutia and D. E. Gorla, Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions, Entomol. Exp. Appl., 95 (2000), 135–140. |
[20] | D. J. Grabiner, Descartes's rule of signs: Another construction, Amer. Math. Monthly, 106 (1999), 854–855. |
[21] | C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 45 (1965), 5–60. |
[22] | E. I. Jury, The inners approach to some problems of system theory, IEEE, Trans. Automatic Contr., AC-16 (1971), 233–240. |
[23] | E. S. Krafsur, Sterile insect technique for suppressing and eradicating insect populations: 55 years and counting, J. Agr. Entomol., 15 (1998), 303–317. |
[24] | J. Li, Simple stage-structured models for wild and transgenic mosquito populations, J. Diff. Eqns. Appl., 17 (2009), 327–347. |
[25] | J. Li, Modeling of mosquitoes with dominant or recessive transgenes and Allee effects, Math. Biosci. Eng., 7 (2010), 101–123. |
[26] | J. Li, Malaria model with stage-structured mosquitoes, Math. Biol. Eng., 8 (2011), 753–768. |
[27] | J. Li, Stage-structured models for interacting wild and sterile mosquitoes, Journal of Shanghai Normal University, 43 (2014), 511–522. |
[28] | J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dynam., 11(S2) (2017). 316–333. |
[29] | J. Li and Z. L. Yuan, Modeling releases of sterile mosquitoes with different strategies, J. Biol. Dynam., 9 (2015), 1–14. |
[30] | Y. Li, Discrete-time Structured Models and their Dynamics for Interactive Wild and Sterile Mosquitoes and Malaria Transmissions, Ph.D thesis, The University of Alabama in Huntsville, 2017. |
[31] | Y. Li and J. Li, Discrete-time models for releases of sterile mosquitoes with Beverton-Holt-type of survivability, Ricerche di Matematica, 67 (2018), 141–162. |
[32] | Y. Li and J. Li, Discrete-time model for malaria transmission with constant releases of sterile mosquitoes, preprint, 2018. |
[33] | R. M. May, G. R. Conway, M. P. Hassell and T. R. E. Southwood, Time delays, density-dependence and single-species oscillations, J. Anim. Ecol., 43 (1974), 747–770. |
[34] | Mosquito Facts, 33 Things You Didn't Know About Mosquitoes, https://www.megacatch. com/mosquito-faqs/mosquito-facts/. |
[35] | M. Otero, H. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate, Bull. Math. Biol., 68 (2006), 1945–1974. |
[36] | D. Ruiz, G. Poveda, I. D. Velez, M. L. Quinones, G. L. Rua, L. E.Velasquesz and J. S. Zuluage, Modeling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System, Malaria J., 5 (2006), 66. |
[37] | Wikipedia, Mosquito-borne disease. Available from: https://en.wikipedia.org/wiki/ Mosquito-borne_disease. |
[38] | Wikipedia, Sterile insect technique. Available from: https://en.wikipedia.org/wiki/ Sterile_insect_technique. |
1. | Hui Wu, Xiaohui Zhang, On the BiHom-Type Nonlinear Equations, 2022, 10, 2227-7390, 4360, 10.3390/math10224360 | |
2. | Shengxiang Wang, Xiaohui Zhang, Shuangjian Guo, Hom-Yang-Baxter equations and Hom-Yang-Baxter systems, 2023, 51, 0092-7872, 1462, 10.1080/00927872.2022.2137518 |