Citation: Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4741-4757. doi: 10.3934/mbe.2019238
[1] | S. Bhatt, P. W. Gething, O. J. Brady, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507. |
[2] | N.G.Gratz, Critical review of the vector status of Aedes albopictus, Med.Vet.Entomol., 18(2004), 215–227. |
[3] | H. Lin, T. Liu, T. Song, et al., Community involvement in dengue outbreak control: An integrated rigorous intervention strategy, PLoS Negl. Trop. Dis., 10 (2016), e0004919. |
[4] | B. Zheng, J. Yu, Z. Xi, et al., The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 387 (2018), 38–48. |
[5] | Z. Xi, C. C. Khoo and S. L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326–328. |
[6] | T. Walker, P. H. Johnson, L. A. Moreika, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453. |
[7] | E. Waltz, US reviews plan to infect mosquitoes with bacteria to stop disease, Nature, 89 (2016), 450–451. |
[8] | D. Zhang, X. Zheng, Z. Xi, et al., Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), e0121126. |
[9] | M. S. Blagrove, C. Arias-Goata, A. B. Failloux, et al., Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus, Proc. Natl. Acad. Sci. USA, 109 (2012), 255–260. |
[10] | A. A. Hoffmann, B. L. Montgomery, J. Popovici, et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011), 454–457. |
[11] | D. Zhang, R. S. Lees, Z. Xi, et al., Combining the sterile insect technique with Wolbachia-based approaches: II-a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release, PLoS One, 10 (2015), e1427. |
[12] | X. Wang, S. Tang and R. A. Cheke, A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations, J. Theor. Biol., 411 (2016), 27–36. |
[13] | X. Zhang, S. Tang, R. A. Cheke, et al., Modeling the effects of augmentation strategies on the control of dengue fever with an impulsive differential equation, Bull. Math. Biol., 78 (2016), 1968–2010. |
[14] | B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math., 74 (2014), 743–770. |
[15] | M. Huang, M. Tang and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77–96. |
[16] | M. Huang, J. Yu, L. Hu, et al., Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249–1266. |
[17] | L. Hu, M. Huang, M. Tang, et al., Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106 (2015), 32–44. |
[18] | L. Hu, M. Huang, M. Tang, et al., Wolbachia spread dynamics in multi-regimes of environmental conditions, J. Theor. Biol., 462 (2019), 247–258. |
[19] | L. Hu, M. Tang, Z. Wu, et al., The threshold infection level for Wolbachia invasion in random environments, J. Diff. Equ., 266 (2019), 4377–4393. |
[20] | B. Zheng, W. Guo, L. Hu, et al., Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission, Math. Biosci. Eng., 15 (2018), 523–541. |
[21] | B. Zheng, M. Tang, J. Yu, et al., Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235–263. |
[22] | B. Zheng and J. Yu, Characterization of Wolbachia enhancing domain in mosquitoes with imper-fect maternal transmission, J. Biol. Dyn., 12 (2018), 596–610. |
[23] | M. Huang, L. Hu and B. Zheng, Comparing the efficiency of Wolbachia driven Aedes mosquito suppression strategies, J. Appl. Anal. Comput., 9 (2019), 1–20. |
[24] | M. Huang, J. Lou, L. Hu, et al., Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1–11. |
[25] | J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187. |
[26] | B. Zheng, X. Liu, M. Tang, et al., Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control, J. Theor. Biol., 472 (2019), 95–109. |
[27] | Y. Li, F. Kamara, G. Zhou, et al., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis., 8 (2014), e3301. |
[28] | F. Liu, C. Zhou and P. Lin, Studies on the population ecology of Aedes albopictus 5. The sea-sonal abundance of natural population of Aedes albopictus in Guangzhou, Acta Sci. Natur. Univ. Sunyatseni, 29 (1990), 118–122. |
[29] | F. Liu, C. Yao, P. Lin, et al., Studies on life table of the natural population of Aedes albopictus, Acta Sci. Natur. Univ. Sunyatseni, 31 (1992), 84–93. |
[30] | H. I. Freedman, Deterministic mathematical models in population ecology, 2nd edition, HIFR Consulting LTD, Edmonton, 1987. |
[31] | H. L. Smith, An introduction to delay differential equations with applications to life sciences, Springer-Verlag, New York, 2011. |
[32] | S. Lee, Development of eggs, larvae and pupae of Aedes albopictus (Skuse) (Diptera: Culicidae), Chinese J. Entomol., 14 (1994), 13–32. |
[33] | Z. Liu, Y. Zhang and Y. Yang, Population dynamics of Aedes (Stegomyia) albopictus (Skuse) under laboratory conditions, Acta Entomol. Sin., 28 (1985), 274–280. |
[34] | L. Zhang, L. Tan, H. Ai, et al., Laboratory and field studies on the oviposition pattern of Aedes albopictus, Acta Parasitol. Et. Med. Entomol. Sin., 16 (2009), 219–223. |
[35] | Z. Zhong and G. He, The life table of laboratory Aedes albopictus under various temperatures, Academic J. Sun Yat-sen Univ. Med. Sci., 9 (1988), 35–39. |
[36] | Y. Wang, X. Liu, C. Li, et al., A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China, J. Econ. Entomol., 110 (2017), 239–244. |