Citation: Guilherme Giovanini, Alan U. Sabino, Luciana R. C. Barros, Alexandre F. Ramos. A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5477-5503. doi: 10.3934/mbe.2020295
[1] | M. Delbrück, Statistical fluctuations in autocatalytic reactions, J. Chem. Phys., 8 (1940), 120-124. doi: 10.1063/1.1750549 |
[2] | M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186. doi: 10.1126/science.1070919 |
[3] | W. J. Blake, M. K?rn, C. R. Cantor, J. J. Collins, Noise in eukaryotic gene expression, Nature, 422 (2003), 633-637. |
[4] | A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas, S. Tyagi, Stochastic mrna synthesis in mammalian cells, PLOS Biol., 4 (2006), e309. |
[5] | D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler, F. Naef, Mammalian genes are transcribed with widely different bursting kinetics, Science, 332 (2011), 472-474. doi: 10.1126/science.1198817 |
[6] | B. Munsky, G. Neuert, A. van Oudenaarden, Using gene expression noise to understand gene regulation, Science, 336 (2012), 183-187. |
[7] | J. M. Raser, E. K. O'Shea, Noise in gene expression: origins, consequences, and control, Science, 309 (2005), 2010-2013. |
[8] | A. M. Arias, P. Hayward, Filtering transcriptional noise during development: concepts and mechanisms, Nat. Rev. Genet., 7 (2006), 34-44. doi: 10.1038/nrg1750 |
[9] | G. Chalancon, C. N. Ravarani, S. Balaji, A. Martinez-Arias, L. Aravind, R. Jothi, et al., Interplay between gene expression noise and regulatory network architecture, Trends Genet., 28 (2012), 221-232. |
[10] | A. Sanchez, I. Golding, Genetic determinants and cellular constraints in noisy gene expression, Science, 342 (2013), 1188-1193. doi: 10.1126/science.1242975 |
[11] | J. Ansel, H. Bottin, C. Rodriguez-Beltran, C. Damon, M. Nagarajan, S. Fehrmann, et al., Cellto-cell stochastic variation in gene expression is a complex genetic trait, PLoS Genet., 4 (2008), e1000049. |
[12] | A. Brock, S. Krause, D. E. Ingber, Control of cancer formation by intrinsic genetic noise and microenvironmental cues, Nat. Rev. Cancer, 15 (2015), 499-509. doi: 10.1038/nrc3959 |
[13] | S. S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Network motifs in the transcriptional regulation network of escherichia coli, Nat. Genet., 31 (2002), 64-68. doi: 10.1038/ng881 |
[14] | G. T. Reeves, The engineering principles of combining a transcriptional incoherent feedforward loop with negative feedback, J. Biol. Eng., 13 (2019). |
[15] | N. Rosenfeld, M. B. Elowitz, U. Alon, Negative autoregulation speeds the response times of transcription networks, J. Mol. Biol., 323 (2002), 785-793. doi: 10.1016/S0022-2836(02)00994-4 |
[16] | A. Sancar, L. A. Lindsey-Boltz, T.-H. Kang, J. T. Reardon, J. H. Lee, N. Ozturk, Circadian clock control of the cellular response to DNA damage, FEBS Lett., 584 (2010), 2618-2625. doi: 10.1016/j.febslet.2010.03.017 |
[17] | M. A. Savageau, Comparison of classical and autogenous systems of regulations in inducible operons, Nature, 252 (1974), 546-549. doi: 10.1038/252546a0 |
[18] | S. Hooshangi, R. Weiss, The effect of negative feedback on noise propagation in transcriptional gene networks, Chaos, 16 (2006), 026108. |
[19] | D. Nevozhay, R. M. Adams, K. F. Murphy, K. Josic, G. Balázsi, Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression., Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 5123-5128. doi: 10.1073/pnas.0809901106 |
[20] | A. Becskei, L. Serrano, Engineering stability in gene networks by autoregulation., Nature, 405 (2000), 590-593. doi: 10.1038/35014651 |
[21] | A. F. Ramos, J. E. M. Hornos, J. Reinitz, Gene regulation and noise reduction by coupling of stochastic processes, Phys. Rev. E, 91 (2015), 020701(R). |
[22] | A. F. Ramos, J. E. M. Hornos, Symmetry and stochastic gene regulation., Phys. Rev. Lett., 99 (2007), 108103. |
[23] | A. F. Ramos, J. Reinitz, Physical implications of so(2, 1) symmetry in exact solutions for a selfrepressing gene, J. Chem. Phys., 151 (2019), 041101. |
[24] | J. N. Anastas, R. T. Moon, Wnt signalling pathways as therapeutic targets in cancer, Nat. Rev. Cancer, 13 (2013), 11-26. doi: 10.1038/nrc3419 |
[25] | C. K. Mirabelli, R. Nusse, D. A. Tuveson, B. O. Williams, Perspectives on the role of wnt biology in cancer, Sci. Signal., 12 (2019), eaay4494. |
[26] | G. Balázsi, A. van Oudenaarden, J. J. Collins, Cellular decision making and biological noise: from microbes to mammals, Cell, 144 (2011), 910-925. doi: 10.1016/j.cell.2011.01.030 |
[27] | L. S. Tsimring, Noise in biology, Rep. Prog. Phys., 77 (2014), 026601. |
[28] | K. Sneppen, Models of life: epigenetics, diversity and cycles, Rep. Prog. Phys., 80 (2017), 042601. |
[29] | J. Peccoud, B. Ycart, Markovian modelling of gene product synthesis, Theor. Popul. Biol., 48 (1995), 222-234. doi: 10.1006/tpbi.1995.1027 |
[30] | J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic, et al., Self-regulating gene: an exact solution., Phys. Rev. E, 72 (2005), 051907. |
[31] | S. Iyer-Biswas, F. Hayot, C. Jayaprakash, Stochasticity of gene products from transcriptional pulsing, Phys. Rev. E, 79 (2009), 031911. doi: 10.1103/PhysRevE.79.031911 |
[32] | A. F. Ramos, G. C. P. Innocentini, J. E. M. Hornos, Exact time-dependent solutions for a selfregulating gene, Phys. Rev. E, 83 (2011), 062902. |
[33] | A. F. Ramos, L. R. Gama, M. C. C. Morais, P. C. M. Martins, Chapter 14: Stochastic modeling for investigation of regulation of transcription of RKIP gene, Prognostic and Therapeutic Applications of RKIP in Cancer, Academic Press, (2020), 257-276. |
[34] | A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 15545-15550. |
[35] | K. Park, T. Prüstel, Y. Lu, J. S. Tsang, Machine learning of stochastic gene network phenotypes, preprint, bioRxiv: 825943. |
[36] | L. R. Gama, G. Giovanini, G. Balázsi, A. F. Ramos, Binary expression enhances reliability of messaging in gene networks, Entropy, 22 (2020), 479. |
[37] | A. Bakk, R. Metzler, K. Sneppen, Sensitivity of OR in phage λ, Biophys. J., 86 (2004), 58-66. |
[38] | A. Grönlund, P. Lötstedt, J. Elf, Transcription factor binding kinetics constrain noise suppression via negative feedback, Nat. Commun., 4 (2013), 1864. |
[39] | D. C. Marciano, R. C. Lua, C. Herman, O. Lichtarge, Cooperativity of negative autoregulation confers increased mutational robustness, Phys. Rev. Lett., 116 (2016), 258104. doi: 10.1103/PhysRevLett.116.258104 |
[40] | K. S. Farquhar, D. A. Charlebois, M. Szenk, J. Cohen, D. Nevozhay, G. Balázsi, Role of network-mediated stochasticity in mammalian drug resistance, Nat. Commun., 10 (2019), 2766. |
[41] | G. M. Cooper, The Cell: A Molecular Approach, 2nd edition, Sinauer Associates Inc, Sunderland (MA), 2000. |
[42] | D. K. Hawley, W. R. McClure, Mechanism of activation of transcription initiation from the lambda-PRM promoter, J. Mol. Biol., 157 (1982), 493-525. doi: 10.1016/0022-2836(82)90473-9 |
[43] | A. R. Kim, C. Martinez, J. Ionides, A. F. Ramos, M. Z. Ludwig, N. Ogawa, et al., Rearrangements of 2.5 kilobases of noncoding dna from the drosophila even-skipped locus define predictive rules of genomic cis-regulatory logic, PLoS Genet., 9 (2013), e1003243. |
[44] | M. R. Fabian, N. Sonenberg, W. Filipowicz, Regulation of mrna translation and stability by micrornas, Annu. Rev. Biochem., 79 (2010), 351-79. doi: 10.1146/annurev-biochem-060308-103103 |
[45] | R. Grima, D. R. Schmidt, T. J. Newman, Steady-state fluctuations of a genetic feedback loop: An exact solution, J. Chem. Phys., 137 (2012), 035104. |
[46] | G. C. P. Innocentini, A. F. Ramos, J. E. M. Hornos, Comment on "steady-state fluctuations of a genetic feedback loop: an exact solution" [J. Chem. Phys. 137, 035104 (2012)], J. Chem. Phys., 142 (2015), 027101. |
[47] | J. Holehouse, Z. Cao, R. Grima, Stochastic modeling of autoregulatory genetic feedback loops: A review and comparative study, Biophys. J., 118 (2020), 1517-1525. doi: 10.1016/j.bpj.2020.02.016 |
[48] | C. Jia, R. Grima, Small protein number effects in stochastic models of autoregulated bursty gene expression, J. Chem. Phys., 152 (2020), 084115. |
[49] | Z. Cao, R. Grima, Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells, Proc. Natl. Acad. Sci. U.S.A., 117 (2020), 4682-4692. doi: 10.1073/pnas.1910888117 |
[50] | R. Yvinec, L. G. S. da Silva, G. N. Prata, J. Reinitz, A. F. Ramos, Bursting on a two state stochastic model for gene transcription in drosophila embryos, preprint, bioRxiv: 107979. |
[51] | N. Kumar, T. Platini, R. V. Kulkarni, Exact distributions for stochastic gene expression models with bursting and feedback, Phys. Rev. Lett., 113 (2014), 268105. |
[52] | T. Tripathi, D. Chowdhury, Interacting RNA polymerase motors on a DNA track: Effects of traffic congestion and intrinsic noise on RNA synthesis, Phys. Rev. E, 77 (2008), 011921. |
[53] | S. Choubey, J. Kondev, A. Sanchez, Deciphering transcriptional dynamics in vivo by counting nascent rna molecules, PLoS Comput. Biol., 11 (2015), e1004345. |
[54] | H. Xu, S. O. Skinner, A. M. Sokac, I. Golding, Stochastic kinetics of nascent rna, Phys. Rev. Lett., 117 (2016), 128101. |
[55] | M. Thattai, A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. USA, 98 (2001), 8614-8619. |
[56] | G. C. P. Innocentini, J. E. M. Hornos, Modeling stochastic gene expression under repression., J. Math. Biol., 55 (2007), 413-431. doi: 10.1007/s00285-007-0090-x |
[57] | V. Shahrezaei, P. S. Swain, Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261. doi: 10.1073/pnas.0803850105 |
[58] | Z. Cao, R. Grima, Linear mapping approximation of gene regulatory networks with stochastic dynamics, Nat. Commun., 9 (2018), 3305. |
[59] | A. F. Ramos, G. C. P. Innocentini, F. M. Forger, J. E. M. Hornos, Symmetry in biology: from genetic code to stochastic gene regulation, IET Syst. Biol., 4 (2010), 311-329. doi: 10.1049/iet-syb.2010.0058 |
[60] | R. Andersson, A. Sandelin, Determinants of enhancer and promoter activities of regulatory elements, Nat. Rev. Genet., 21 (2019), 71-87. |
[61] | N. Rosenfeld, T. J. Perkins, U. Alon, M. B. Elowitz, P. S. Swain, A fluctuation method to quantify in vivo fluorescence data, Biophys. J., 91 (2006), 759-766. doi: 10.1529/biophysj.105.073098 |
[62] | G. N. Prata, J. E. M. Hornos, A. F. Ramos, Stochastic model for gene transcription on drosophila melanogaster embryos, Phys. Rev. E, 93 (2016), 022403. |
[63] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series vol. 55, 10th edition, U.S. Department of Commerce, Washington (DC), 1972. |
[64] | O. Hallikas, K. Palin, N. Sinjushina, R. Rautiainen, J. Partanen, E. Ukkonen, et al., Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity, Cell, 124 (2006), 47-59. |
[65] | C. P. Fulco, J. Nasser, T. R. Jones, G. Munson, D. T. Bergman, V. Subramanian, et al., Activityby-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations, Nat. Genet., 51 (2019), 1664-1669. |
[66] | I. Heemskerk, K. Burt, M. Miller, S. Chhabra, M. C. Guerra, L. Liu, et al., Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells, eLife, 8 (2019), e40526. |
[67] | A. Paré, D. Lemons, D. Kosman, W. Beaver, Y. Freund, W. McGinnis, Visualization of individual scr mrnas during drosophila embryogenesis yields evidence for transcriptional bursting, Curr. Biol., 19 (2009), 2037-2042. doi: 10.1016/j.cub.2009.10.028 |
[68] | A. Crudu, A. Debussche, O. Radulescu, Hybrid stochastic simplifications for multiscale gene networks, BMC Syst. Biol., 3 (2009), 89: 1-89: 25. |
[69] | H. Kuwahara, S. T. Arold, X. Gao, Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression, Integr. Biol., 7 (2015), 1622-1632. doi: 10.1039/c5ib00107b |
[70] | J. M. Pedraza, A. van Oudenaarden, Noise propagation in gene networks, Science, 307 (2005), 1965-1969. |
[71] | L. A. Sepúlveda, H. Xu, J. Zhang, M. Wang, I. Golding, Measurement of gene regulation in individual cells reveals rapid switching between promoter states, Science, 351 (2016), 1218-1222. doi: 10.1126/science.aad0635 |
[72] | D. Chetverina, M. Fujioka, M. Erokhin, P. Georgiev, J. B. Jaynes, P. Schedl, Boundaries of loop domains (insulators): Determinants of chromosome form and function in multicellular eukaryotes, BioEssays, 39 (2017), 1600233. |
[73] | J. Mozziconacci, M. Merle, A. Lesne, The 3d genome shapes the regulatory code of developmental genes, J. Mol. Biol., 432 (2020), 712-723. doi: 10.1016/j.jmb.2019.10.017 |
[74] | P. P. Fiziev, The heun functions as a modern powerful tool for research in different scientific domains, preprint, arXiv: 1512.04025. |
[75] | T. Fournier, J. Gabriel, C. Mazza, J. Pasquier, J. Galbete, N. Mermod, Steady-state expression of self-regulated genes, Bioinformatics, 23 (2007), 3185-3192. doi: 10.1093/bioinformatics/btm490 |
[76] | D. Lepzelter, H. Feng, J. Wang, Oscillation, cooperativity, and intermediates in the self-repressing gene, Chem. Phys. Lett., 490 (2010), 216-220. |
[77] | E. S. Cheb-Terrab, A. D. Roche, Hypergeometric solutions for third order linear odes, preprint, arXiv: 0803.3474. |