Research article Special Issues

A Fokker-Planck approach to the study of robustness in gene expression

  • Received: 26 June 2020 Accepted: 15 September 2020 Published: 24 September 2020
  • We study several Fokker-Planck equations arising from a stochastic chemical kinetic system modeling a gene regulatory network in biology. The densities solving the Fokker-Planck equations describe the joint distribution of the mRNA and μRNA content in a cell. We provide theoretical and numerical evidence that the robustness of the gene expression is increased in the presence of μRNA. At the mathematical level, increased robustness shows in a smaller coefficient of variation of the marginal density of the mRNA in the presence of μRNA. These results follow from explicit formulas for solutions. Moreover, thanks to dimensional analyses and numerical simulations we provide qualitative insight into the role of each parameter in the model. As the increase of gene expression level comes from the underlying stochasticity in the models, we eventually discuss the choice of noise in our models and its influence on our results.

    Citation: Pierre Degond, Maxime Herda, Sepideh Mirrahimi. A Fokker-Planck approach to the study of robustness in gene expression[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6459-6486. doi: 10.3934/mbe.2020338

    Related Papers:

  • We study several Fokker-Planck equations arising from a stochastic chemical kinetic system modeling a gene regulatory network in biology. The densities solving the Fokker-Planck equations describe the joint distribution of the mRNA and μRNA content in a cell. We provide theoretical and numerical evidence that the robustness of the gene expression is increased in the presence of μRNA. At the mathematical level, increased robustness shows in a smaller coefficient of variation of the marginal density of the mRNA in the presence of μRNA. These results follow from explicit formulas for solutions. Moreover, thanks to dimensional analyses and numerical simulations we provide qualitative insight into the role of each parameter in the model. As the increase of gene expression level comes from the underlying stochasticity in the models, we eventually discuss the choice of noise in our models and its influence on our results.


    加载中


    [1] L. Bleris, Z. Xie, D. Glass, A. Adadey, E. Sontag, Y. Benenson, Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template, Molecular systems biology, 7 (2011), 519. doi: 10.1038/msb.2011.49
    [2] R. Blevins, L. Bruno, T. Carroll, J. Elliott, A. Marcais, C. Loh, et al., Micrornas regulate cellto-cell variability of endogenous target gene expression in developing mouse thymocytes, PLoS genetics, 11 (2015).
    [3] M. S. Ebert, P. A. Sharp, Roles for micrornas in conferring robustness to biological processes, Cell, 149 (2012), 515-524. doi: 10.1016/j.cell.2012.04.005
    [4] H. Herranz, S. M. Cohen, Micrornas and gene regulatory networks: managing the impact of noise in biological systems, Genes & development, 24 (2010), 1339-1344.
    [5] M. Osella, C. Bosia, D. Corá, M. Caselle, The role of incoherent microrna-mediated feedforward loops in noise buffering, PLoS Comput Biol, 7 (2011), e1001101.
    [6] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1981.
    [7] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403-434. doi: 10.1016/0021-9991(76)90041-3
    [8] C. Bosia, M. Osella, M. El Baroudi, D. Corà, M. Caselle, Gene autoregulation via intronic micrornas and its functions, BMC Syst. Biol., 6 (2012), 131. doi: 10.1186/1752-0509-6-131
    [9] P. Degond, S. Jin, Y. Zhu, An uncertainty quantification approach to the study of gene expression robustness, preprint, arXiv: 1910.07188.
    [10] B. Perthame, Parabolic Equations in Biology, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, Cham, 2015.
    [11] P. Lötstedt, L. Ferm, Dimensional reduction of the Fokker-Planck equation for stochastic chemical reactions, Multiscale Modeling & Simulation, 5 (2006), 593-614.
    [12] P. Degond, M. Herda, S. Mirrahimi, FPmuRNA, 2020. Available from: https://gitlab.inria.fr/herda/fpmurna.
    [13] D. T. Gillespie, The chemical langevin equation, The Journal of Chemical Physics, 113 (2000), 297-306. doi: 10.1063/1.481811
    [14] W. Huang, M. Ji, Z. Liu, Y. Yi, Steady states of Fokker-Planck equations: I. Existence, J. Dynam. Differential Equations, 27 (2015), 721-742. doi: 10.1007/s10884-015-9454-x
    [15] W. Huang, M. Ji, Z. Liu, Y. Yi, Integral identity and measure estimates for stationary FokkerPlanck equations, Ann. Probab., 43 (2015), 1712-1730. doi: 10.1214/14-AOP917
    [16] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker-Planck-Kolmogorov Equations, American Mathematical Society, Providence, RI, 2015.
    [17] R. Z. Has'minskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, Teor. Verojatnost. i Primenen., 5 (1960), 196-214.
    [18] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, 2001.
    [19] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions Hardback and CD-ROM, Cambridge University Press, Cambridge, 2010.
    [20] M. Bessemoulin-Chatard, M. Herda, T. Rey, Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations, Math. Comp., 89 (2020), 1093-1133.
    [21] J. S. Chang, G. Cooper, A practical difference scheme for Fokker-Planck equations, Journal of Computational Physics, 6 (1970), 1-16. doi: 10.1016/0021-9991(70)90001-X
    [22] C. Chainais-Hillairet, J. Droniou, Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions, IMA J. Numer. Anal., 31 (2011), 61-85. doi: 10.1093/imanum/drp009
    [23] H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis, 22 (1976), 366-389.
    [24] S. G. Bobkov, M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., 10 (2000), 1028-1052. doi: 10.1007/PL00001645
    [25] D. Bakry, Michel Émery, Diffusions hypercontractives, in Séminaire de Probabilités, XIX, 1983/84, Springer, Berlin, (1985), 177-206.
    [26] D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, in Lectures on Probability Theory (Saint-Flour, 1992), Springer, Berlin, (1994), 1-114.
    [27] A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differ. Equations, 26 (2001), 43-100. doi: 10.1081/PDE-100002246
    [28] A. Arnold, J. Dolbeault, Refined convex Sobolev inequalities, J. Funct. Anal., 225 (2005), 337-351. doi: 10.1016/j.jfa.2005.05.003
    [29] B. Arras, Y. Swan, A stroll along the gamma, Stochastic Process. Appl., 127 (2017), 3661-3688.
    [30] D. Bakry, Remarques sur les semigroupes de Jacobi, Astérisque, 236 (1996), 23-39.
    [31] M. Benaïm, R. Rossignol, Exponential concentration for first passage percolation through modified Poincaré inequalities, Ann. Inst. Henri Poincaré Probab. Stat., 44 (2008), 544-573. doi: 10.1214/07-AIHP124
    [32] L. Miclo, Sur l'inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre, in Séminaire de Probabilités, XXXVI, Springer, Berlin, (2003), 222-229.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4153) PDF downloads(157) Cited by(3)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog