Research article

Stationary distribution and probability density function analysis of a stochastic Microcystins degradation model with distributed delay

  • Received: 08 September 2023 Revised: 09 November 2023 Accepted: 10 December 2023 Published: 18 December 2023
  • A stochastic Microcystins degradation model with distributed delay is studied in this paper. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic system. Second, we derive a stochastic critical value $ R_0^s $ related to the basic reproduction number $ R_0 $. By constructing suitable Lyapunov function types, we obtain the existence of an ergodic stationary distribution of the stochastic system if $ R_0^s > 1. $ Next, by means of the method developed to solve the general four-dimensional Fokker-Planck equation, the exact expression of the probability density function of the stochastic model around the quasi-endemic equilibrium is derived, which is the key aim of the present paper. In the analysis of statistical significance, the explicit density function can reflect all dynamical properties of a chemostat model. To validate our theoretical conclusions, we present examples and numerical simulations.

    Citation: Ying He, Yuting Wei, Junlong Tao, Bo Bi. Stationary distribution and probability density function analysis of a stochastic Microcystins degradation model with distributed delay[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 602-626. doi: 10.3934/mbe.2024026

    Related Papers:

  • A stochastic Microcystins degradation model with distributed delay is studied in this paper. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic system. Second, we derive a stochastic critical value $ R_0^s $ related to the basic reproduction number $ R_0 $. By constructing suitable Lyapunov function types, we obtain the existence of an ergodic stationary distribution of the stochastic system if $ R_0^s > 1. $ Next, by means of the method developed to solve the general four-dimensional Fokker-Planck equation, the exact expression of the probability density function of the stochastic model around the quasi-endemic equilibrium is derived, which is the key aim of the present paper. In the analysis of statistical significance, the explicit density function can reflect all dynamical properties of a chemostat model. To validate our theoretical conclusions, we present examples and numerical simulations.



    加载中


    [1] J. Li, R. Li, J. Li, Current research scenario for microcystins biodegradation—a review on fundamental knowledge application prospects and challenges, Sci. Total Environ., 595 (2017), 615–632. https://doi.org/10.1016/j.scitotenv.2017.03.285 doi: 10.1016/j.scitotenv.2017.03.285
    [2] J. Li, K. Shimizu, H. Maseda, Z. Lu, M. Utsumi, Z. Zhang, et al., Investigations into the biodegradation of microcystin-LR mediated by the biofilm in wintertime from a biological treatment facility in a drinking-water treatment plant, Bioresour. Technol., 106 (2012), 27–35. https://doi.org/10.1016/j.biortech.2011.11.099 doi: 10.1016/j.biortech.2011.11.099
    [3] K. Shimizu, H. Maseda, K. Okano, T. Kurashima, Y. Kawauchi, Q. Xue, et al., Enzymatic pathway for biodegrading microcystin LR in sphingopyxis sp. C-1, J. Biosci. Bioeng., 114 (2012), 630–634. https://doi.org/10.1016/j.jbiosc.2012.07.004 doi: 10.1016/j.jbiosc.2012.07.004
    [4] K. Song, W. Ma, K. Guo, Global behavior of a dynamic model with biodegradation of microcystins, J. Appl. Anal. Comput., 9 (2019), 1261–1276. https://doi.org/10.11948/2156-907X.20180215 doi: 10.11948/2156-907X.20180215
    [5] K. Ge, K. Song, W. Ma, Existence of positive periodic solutions of a delayed periodic Microcystins degradation model with nonlinear functional responses, Appl. Math. Lett., 131 (2022), 108056. https://doi.org/10.1016/j.aml.2022.108056 doi: 10.1016/j.aml.2022.108056
    [6] J. Caperon, Time lag in population growth response of isochrysis galbana to a variable nitrate environment, Ecology, 50 (1969), 188–192. https://doi.org/10.2307/1934845 doi: 10.2307/1934845
    [7] M. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in monochrysis lutheri, J. Mar. Biol. Assoc. UK, 48 (1968), 689–733. https://doi.org/10.1017/S0025315400019238 doi: 10.1017/S0025315400019238
    [8] B. Li, G. Wolkowicz, Y. Kuang, Global asymptotic behavior of a chemostat model with two perfectly complementary resources and distributed delay, SIAM J. Appl. Math., 60 (2000), 2058–2086. https://doi.org/10.1137/S0036139999359756 doi: 10.1137/S0036139999359756
    [9] K. Song, W. Ma, Z. Jiang, Bifurcation analysis of modeling biodegradation of microcystins, Int. J. Biomath., 12 (2019), 1950028. https://doi.org/10.1142/S1793524519500281 doi: 10.1142/S1793524519500281
    [10] N. Macdonald, Time lags in biological models, in Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 1978. https://doi.org/10.1007/978-3-642-93107-9
    [11] T. C. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357–370. https://doi.org/10.1007/bf02462011 doi: 10.1007/bf02462011
    [12] M. Bandyopadhyay, J. Chattopadhyay, Ratio-dependent predator–prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913–936. https://doi.org/10.1088/0951-7715/18/2/022 doi: 10.1088/0951-7715/18/2/022
    [13] I. Addition, Extinction and persistence in mean of a novel delay impulsive stochastic infected predator–prey system with jumps, Complexity, 2017 (2017), 1950970. https://doi.org/10.1155/2017/1950970 doi: 10.1155/2017/1950970
    [14] X. Meng, S. Zhao, T. Feng, T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227–242. https://doi.org/10.1016/j.jmaa.2015.07.056 doi: 10.1016/j.jmaa.2015.07.056
    [15] X. Leng, T. Feng, X. Meng, Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps, J. Inequal. Appl., 2017 (2017), 138. https://doi.org/10.1186/s13660-017-1418-8 doi: 10.1186/s13660-017-1418-8
    [16] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, 2001.
    [17] B. Han, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation, Chaos Solitons Fractals, 140 (2020), 110238. https://doi.org/10.1016/j.chaos.2020.110238 doi: 10.1016/j.chaos.2020.110238
    [18] B. Zhou, B. Han, D. Jiang, Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations, Chaos Solitons Fractals, 152 (2021), 111338. https://doi.org/10.1016/j.chaos.2021.111338 doi: 10.1016/j.chaos.2021.111338
    [19] Z. Shi, D. Jiang, N. Shi, A. Alsaedi, Virus infection model under nonlinear perturbation: Ergodic stationary distribution and extinction, J. Franklin. Inst., 359 (2022), 11039–11067. https://doi.org/10.1016/j.jfranklin.2022.03.035 doi: 10.1016/j.jfranklin.2022.03.035
    [20] S. Zhang, X. Meng, X. Wang, Application of stochastic inequalities to global analysis of a nonlinear stochastic SIRS epidemic model with saturated treatment function, Adv. Differ. Equations, 2018 (2018), 50. https://doi.org/10.1186/s13662-018-1508-z doi: 10.1186/s13662-018-1508-z
    [21] Z. Shi, X. Zhang, D. Jiang, Dynamics of an avian influenza model with half-saturated incidence, Appl. Math. Comput., 355 (2019), 399–416. https://doi.org/10.1016/j.amc.2019.02.070 doi: 10.1016/j.amc.2019.02.070
    [22] R. Z. Khas'minskii, Stochastic Stability of Differential Equations, Sijthoff Noordhoff, Alphen ana den Rijn, Netherlands, 1980. https://doi.org/10.1007/978-94-009-9121-7
    [23] D. Xu, Y. Huang, Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005–1023. https://doi.org/10.3934/dcds.2009.24.1005 doi: 10.3934/dcds.2009.24.1005
    [24] J. Ge, W. Zuo, D. Jiang, Stationary distribution and density function analysis of a stochastic epidemic HBV model, Math. Comput. Simul., 191 (2022), 232–255. https://doi.org/10.1016/j.matcom.2021.08.003 doi: 10.1016/j.matcom.2021.08.003
    [25] Y. Shang, Lie algebraic discussion for affinity based information diffusion in social networks, Open Phys., 15 (2017), 705–711. https://doi.org/10.1515/phys-2017-0083 doi: 10.1515/phys-2017-0083
    [26] Y. Shang, Analytical solution for an in-host viral infection model with time-inhomogeneous rates, Acta Phys. Pol. B, 46 (2015), 1567–1577. https://doi.org/10.5506/aphyspolb.46.1567 doi: 10.5506/aphyspolb.46.1567
    [27] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Springer, 1983.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(895) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog