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Abstract: To control mosquito-borne diseases such as dengue, malaria, and Zika, Wolbachia-infected
male mosquitoes have been released in open areas to suppress wild mosquito population driven by
cytoplasmic incompatibility (CI). In this work, we initiate a preliminary assessment on how the CI
intensity ξ, and the mating competitiveness µ of released males relative to wild males, impact the
suppression efficacy by a delay differential equation model. Our analysis identifies a threshold CI
intensity ξ0 ∈ (0, 1) as an increasing function of the natural reproduction rate of the wild mosquitoes,
and a threshold value r∗ for the ratio r(t) between the numbers of released males and wild males. The
population suppression fails when ξ ≤ ξ0, and succeeds when ξ > ξ0 and r(t) ≥ r∗. Our analyses
indicate that ξ plays a more important role than µ in the population suppression. For instance, a slight
decrease of ξ from 1 to 0.92 is more devastating than halving µ from 1 to 0.5. In our estimation of
the optimal starting date for infected male release to target a more than 95% wild population reduction
during the peak season of dengue in Guangzhou, we find that the optimal date is almost independent
of µ but is sensitive to ξ. If CI is complete, then starting about two months ahead can be an optimal
option for less financial and labor costs. A slight reduction in the CI intensity requires a considerably
earlier starting date.
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1. Introduction

The invasive Asian tiger mosquito Aedes albopictus, originally indigenous to Southeast Asia, has
invaded most continents, including Africa, Europe, and the Americas, prompted by international travel
and trade, especially the used tire trade [1, 2]. As a competent vector of more than 25 viruses such as
dengue, Zika, and chikungunya, Aedes albopictus is a species of great medical concern in the world.
It is the sole transmission vector of dengue in southern China. In 2014, an unprecedented outbreak of
dengue fever hit Guangzhou, the capital city of Guangdong province, with 37,354 laboratory confirmed
cases of infection [3].

With no effective therapies or licensed vaccines available, the dominating dengue control strategy
has been vector elimination, including community-based source reduction and insecticide spraying.
However, the invasiveness of Aedes albopictus and the creation of ubiquitous larval sources make
source reduction a challenging task, while heavy insecticide applications induce serious environmental
pollution and the insecticide resistance [1, 2, 4]. Fortunately, novel disease control methods using the
endosymbiotic bacterium Wolbachia have been developed since the pioneering study of Xi et al. [5] in
2005. The success of the methods can be attributed mostly to the following facts: Biological safety :
Wolbachia are naturally presented in up to 60% of insects, but are not usually found in the Aedes
aegypti mosquito that transmits human viruses [6]. Virus control : The infection of some Wolbachia
strains such as wMel has shown to block the transmission of dengue and other viruses in both Aedes
aegypti and Aedes albopictus [6, 7, 8, 9]. Maternal transmission : The bacterium is transmitted from
infected females to the next generation. Cytoplasmic incompatibility (CI): If a Wolbachia strain is
infected by a male mosquito, but not by a female, then their crossing is incompatible that induces
zygotic death and female sterility [5, 6, 8, 9].

These tantalizing properties have engineered two Wolbachia-driven approaches for the elimina-
tion of mosquito borne diseases: population replacement and population suppression of wild Aedes
mosquitoes. In the first approach, both male and female mosquitoes infected by a Wolbachia strain
are released in natural areas. If the released numbers exceed a threshold level, then the reproduction
advantage of the infected females driven by the CI mechanism and maternal transmission can facilitate
the spread and fixation of Wolbachia in the wild mosquito population [10]. In the second approach,
only infected males are released in natural areas. The incompatible crossing between the released
males and the wild females induces female sterility and a suppression of the next generation [8, 11].
These developments have stimulated extensive research activities in mathematical ecology to study
the Wolbachia interfered population dynamics of mosquitoes [10, 11, 12, 13, 14]. In recent years, we
have estimated the threshold release level for Wolbachia fixation and quantified how this critical level
is affected by various factors such as the spatial movement of mosquitoes [15, 16], the randomness of
climatic conditions [17, 18, 19], and the leakage of maternal transmission [20, 21, 22]. More recently,
we have also assessed the sensitivity of system parameters on the efficacy of Wolbachia driven Aedes
mosquito suppression [23, 24, 25].

Let µ ≥ 0 denote the mating competitiveness of the male mosquitoes infected by a Wolbachia strain
comparing to wild males in the competition for wild female mating. Let ξ ∈ [0, 1] denote the CI
intensity – the zygotic death rate from the incompatible crossing of infected males and wild females.
In the modeling of Wolbachia interfered mosquito dynamics so far, it has been almost always assumed
that released males are equally competitive as wild males with µ = 1, and the CI is complete with
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ξ = 1. These assumptions are indeed strongly supported by the experiments in laboratory or even
in the semi-field cages [8, 11]. However, the field trials of Aedes albopictus population suppression
in Guangzhou since 2015 have revealed a significant reduction in the competitiveness with µ ranging
from 0.50 to 0.75 in wild areas [8, 11, 26]. In fact, wild Aedes albopictus mosquitoes in Guangzhou are
naturally infected with two Wolbachia strains wAlbA and wAlbB. It is the infection of the third type of
Wolbachia strain, wPip, established by embryonic micro-injections, that blocks virus transmission and
induces CI in the crossing of triple-infected males and double-infected females [8]. Although the CI
intensity is found to be strong with ξ ≥ 0.95, it does indicate a possibility that CI may not be complete.

In this work, we initiate a preliminary assessment on how the reduced mating competitiveness and
incomplete CI impair the efficacy of the Wolbachia-driven population suppression of Aedes mosquitoes
in natural areas. This is of primary importance for designing more effective mosquito release policies
in the planned large scale mosquito suppression campaign. We consider a population of wild adult
mosquitoes in a total number A(t) at time t in the studying area, evenly divided in sex, that are interfered
by R(t) released male adults infected by a Wolbachia strain not presented in the natural population. If
the released males are equally competitive as wild males in mating, then the chance for a female to mate
a released male, or the incompatible crossing probability, equals R(t) over the total number A(t)/2+R(t)
of all males. In general, as the contribution of released males is scaled by the mating competitiveness
µ, the incompatible crossing probability becomes µR(t)/[A(t)/2 + µR(t)]. The offsprings produced by
a female consist of two parts: those from compatible crossings, and those from incompatible crossings
reduced by CI. Assume that the waiting time from the mating to the eclosion of next generation takes
τ days, and each female produces b adult offsprings per day on average in compatible crossings. The
delay τ changes with the climate and nutrient conditions and varies from 16 days to 66 days for Aedes
albopictus in Guangzhou [27, 28, 29]. By taking account of the compatible and incompatible crossings
and the CI intensity into consideration, we obtain the expected number of adults on day t produced by
a single female on day t − τ as

b ·
A(t − τ)/2

A(t − τ)/2 + µR(t − τ)
+ b(1 − ξ) ·

µR(t − τ)
A(t − τ)/2 + µR(t − τ)

. (1.1)

By multiplying theses terms with the total number of females, A(t−τ)/2, on day t−τ, we obtain the
eclosion rate on day t. For the mortality terms, we follow the idea of Herb Freedman in the description
of the classical logistic model [30]: For small A(t) the population decays linearly with a minimum
mortality rate m > 0; for large A(t) the mosquitoes “compete each other for the limited resources” in
the breeding sites in the larval stage and the decay is dominated by a second order term. In summary,
we set

dA(t)
dt

=
b
2

A(t − τ) + 2(1 − ξ)µR(t − τ)
A(t − τ) + 2µR(t − τ)

A(t − τ) − m
(
1 +

A(t)
K

)
A(t). (1.2)

The constant K plays the role that characterizes the density restriction as in the logistic model, but
is not the carrying capacity due to the complexity of the eclosion terms and the factor m. If we set
r(t) = 2R(t)/A(t), the ratio of the released male numbers over the wild male numbers, then (1.2) is
converted to

dA(t)
dt

=
b
2

1 + µ(1 − ξ)r(t − τ)
1 + µ r(t − τ)

A(t − τ) − m
(
1 +

A(t)
K

)
A(t). (1.3)
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In accordance with their biological meanings, we maintain the following conditions for the system
parameters:

b, τ, K > 0; m ∈ (0, 1); µ ≥ 0; ξ ∈ [0, 1]. (1.4)

The solution of (1.3) subject to the initial condition A(t) = φ(t) ∈ C([t0 − τ, t0], (0,∞)) for t ∈
[t0 − τ, t0], t0 ≥ 0, will be denoted by A(t) = A(t, t0, φ).

We assess the impact of the mating competitiveness µ and the CI intensity ξ on the suppression
efficacy of wild Aedes mosquitoes, by analyzing the global dynamics of (1.3) and performing numerical
simulations with the experimental data. Our analysis identifies a threshold CI intensity ξ0 ∈ (0, 1)
that increases in the reproduction of wild mosquitoes. When ξ ≤ ξ0, the population suppression is
improbable no matter how many infected males are released. For ξ > ξ0, we find a threshold release
ratio r∗ > 0: If r(t) is kept at a low level with r̄ = sup[0,∞) r(t) < r∗, then A(t) is bounded below
by a positive constant depending on r̄; if r(t) ≥ r∗ for large t, then limt→∞ A(t) = 0. Our theorems
are inclined to support a more important role of ξ than µ in the population suppression. It is further
supported by our numerical examples which show that a slight decrease of ξ from 1 to 0.92 is more
devastating than halving µ from 1 to 0.5. The CI intensity ξ0 not only warns an absolute failure of the
population suppression when ξ < ξ0, it also predicts a great challenge of mosquito control when ξ is
not considerably higher than ξ0. Finally, we estimate the optimal starting date for infected male release
to target a more than 95% reduction of the wild population on October 1, normally in the middle of
the peak season for mosquito growth and dengue fever transmission in Guangzhou. We find that the
optimal date is almost independent of µ but is sensitive to ξ. If CI is complete, then starting about two
months ahead can be an optimal option for less financial and labor costs. A slight reduction in the CI
intensity may require not only more male releases, but also a considerably earlier starting date.

2. The threshold levels for population suppression

We estimate the thresholds for population suppression of wild Aedes mosquitoes by studying the
global dynamics of (1.3). We begin with the following simple and fundamental result.

Lemma 2.1. For each φ ∈ C([t0 − τ, t0], (0,∞)), the solution A(t) = A(t, t0, φ) of (1.3) is positive and
bounded in t > t0.

Proof. Suppose for contradiction that A(t) > 0 does not hold for all t > t0. Then we may find a t1 > t0

such that A(t) > 0 in [t0 − τ, t1) and A(t1) = 0. As A vanishes the first time at t1, we have A′(t1) ≤ 0,
which contradicts

A′(t1) =
b
2

1 + µ(1 − ξ)r(t1 − τ)
1 + µr(t1 − τ)

A(t1 − τ) > 0

obtained from (1.3). If A(t) is unbounded, then there exists a sequence {tn}, with tn → ∞ as n → ∞,
such that A′(tn) ≥ 0, A(tn − τ) ≤ A(tn), A(tn)→ ∞ as n→ ∞. Substituting t = tn into (1.3) and applying
these conditions yield

m
(
1 +

A(tn)
K

)
≤

b
2

1 + µ(1 − ξ)r(tn − τ)
1 + µr(tn − τ)

≤ sup
x≥0

b
2

1 + µ(1 − ξ)x
1 + µx

,

which is apparently incompatible with the unboundedness of A. �
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2.1. The lower bound of the CI intensity

As b counts the average number of adult offspring produced by a single female per day in compatible
crossings, while m ∈ (0, 1) is the average daily mortality rate of adults, it holds in normal environmental
conditions that b > 2m, that is,

ξ0 = 1 −
2m
b

> 0. (2.1)

As in [25], we will also maintain this condition in the following studies. Interestingly, our next
result shows that ξ0 defines a lower bound on the CI intensity below which population suppression is,
independent of releasing efforts, absolutely improbable.

Theorem 2.1. If the CI intensity ξ < ξ0, then it holds uniformly that

A = lim inf
t→∞

A(t) ≥
bK(ξ0 − ξ)

2m
> 0, (2.2)

independent of the initial function φ ∈ C([t0 − τ, t0], (0,∞)) and the releasing amount R(t).

Proof. We first prove A > 0. Suppose for contradiction that it is not true. Then A = 0. For an arbitrary
initial function φ ∈ C([t0 − τ, t0], (0,∞)), let φ0 denote its absolute minimum value on [t0 − τ, t0]. For
each n = 1, 2, · · · , define tn as the least time at which A reaches φ0/(n + 1). By the assumption A = 0,
tn is well-defined, and

A(t) > A(tn) =
φ0

n + 1
for t ∈ [t0 − τ, tn), A′(tn) ≤ 0, lim

n→∞
tn = ∞. (2.3)

Let t = tn in (1.3). We then have

m
(
1 +

A(tn)
K

)
A(tn) ≥

b
2

1 + µ(1 − ξ)r(tn − τ)
1 + µ r(tn − τ)

A(tn − τ).

As A(tn− τ) > A(tn), the inequality remains valid after replacing A(tn− τ) by A(tn). Reorganizing terms
slightly leads to

1 +
A(tn)

K
≥

b
2m

1 + µ(1 − ξ)r(tn − τ)
1 + µ r(tn − τ)

.

Because [1 + µ(1 − ξ)x]/(1 + µx) decreases in x ≥ 0, by using (2.1) we find further that

1 +
A(tn)

K
>

b(1 − ξ)
2m

⇒ A(tn) > K
[
b(1 − ξ)

2m
− 1

]
=

bK(ξ0 − ξ)
2m

.

This is obviously inconsistent with (2.3) when n is sufficiently large and verifies A > 0.
By using the fluctuation lemma, see Lemma A.1 in [31], we can find a sequence {sn} such that

sn → ∞, A(sn)→ A and A′(sn)→ 0 as n→ ∞. Let t = sn in (1.3). We obtain

m
(
1 +

A(sn)
K

)
A(sn) ≥

b(1 − ξ)
2

A(sn − τ) − A′(sn)

whose infimum limit with n→ ∞ yields

m
(
1 +

A
K

)
A ≥

b(1 − ξ)
2

A.

from which (2.2) follows at once. �

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4741–4757.



4746

In the special case of ξ = ξ0, no meaningful conclusion can be made from Theorem 2.1 since the
low bound in (2.2) equals zero. The following theorem shows that A(t) is still bounded below by a
positive constant which depends on the upper bound of the releasing ratio r(t).

Theorem 2.2. Assume that the CI intensity ξ = ξ0 and r̄ = sup[t0−τ,∞) r(t) < ∞. Then

A = lim inf
t→∞

A(t) ≥
bKξ0

2m(1 + µr̄)
> 0 (2.4)

for any initial function φ ∈ C([t0 − τ, t0], (0,∞)).

Proof. Similar to the proof of Theorem 2.1, we first prove A > 0. In fact, if A = 0, then there is an
infinite series {sn} such that A(t) > A(sn) for t ∈ [t0 − τ, sn), A′(sn) ≤ 0 and A(sn)→ 0 as n→ ∞. From
(1.3), we have

m
(
1 +

A(sn)
K

)
A(sn) ≥

b
2

1 + µ(1 − ξ0)r(sn − τ)
1 + µr(sn − τ)

A(sn − τ).

As A(sn − τ) > A(sn), by using (2.1) we obtain

1 +
A(sn)

K
>

b
2m

1 +
2mµ

b r(sn − τ)
1 + µr(sn − τ)

=

b
2m + µr(sn − τ)
1 + µr(sn − τ)

.

Hence

A(sn)
K

>
b

2m − 1
1 + µr(sn − τ)

=
b ξ0

2m[1 + µr(sn − τ)]
≥

b ξ0

2m(1 + µr̄)

which clearly contradicts the assumption A(sn)→ 0 and confirms A > 0.
The remaining proof uses the same idea as in the proof of Theorem 2.1 based on the fluctuation

lemma with a slightly more complicated calculation. Let {sn} be an infinite sequence with A(sn) → A
and A′(sn) → 0 as n → ∞. As [1 + µ(1 − ξ)x]/(1 + µx) decreases in x ≥ 0, substituting t = sn in (1.3)
leads to

m
(
1 +

A(sn)
K

)
A(sn) ≥

b
2

1 + µ(1 − ξ0)r̄
1 + µ r̄

A(sn − τ) − A′(sn).

By taking the infimum limit, we derive

m
(
1 +

A
K

)
A ≥

b
2

1 + µ(1 − ξ0)r̄
1 + µr̄

A

and so

1 +
A
K
≥

b
2m

1 + µ(1 − ξ0)r̄
1 + µr̄

=

b
2m + µr̄
1 + µr̄

.

It follows that

A ≥ K
 b

2m + µr̄
1 + µr̄

− 1
 = K

b
2m − 1
1 + µr̄

=
bKξ0

2m(1 + µr̄)
.

This completes the proof. �
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Suppose that one of the following three extreme conditions holds:
(1) ξ = 0 — Wolbachia infection does not modify the reproduction of wild Aedes mosquitoes at all.
(2) µ = 0 — Wild female mosquitoes refuse to mate with released males completely.
(3) R(t) ≡ 0 — No males carrying a novel Wolbachia strain are released.

Then System (1.3) reduces to

dA(t)
dt

=
b
2

A(t − τ) − m
(
1 +

A(t)
K

)
A(t), (2.5)

which describes the dynamics of wild mosquito population without Wolbachia intervention. Theorem
2.1 applies to (2.5) with ξ = 0. Let A∗0 denote the constant in (2.2) in this case:

A∗0 =
bKξ0

2m
=

(
b

2m
− 1

)
K. (2.6)

Then Theorem 2.1 gives A ≥ A∗0. Furthermore, by applying the proof of Theorem 2.1 in the last
paragraph to the upper limit A = lim supt→∞ A(t), we can also prove A ≤ A∗0. It follows that A = A = A∗0,
and so A(t) ≡ A∗0 is globally asymptotically stable as shown by Yu [25]. It indicates that A∗0 defines the
carrying capacity of the wild adult mosquito population.

2.2. The lower bound for releasing

In view of Theorem 2.1 and the discussion following its proof, it is natural to assume

µ > 0, ξ > ξ0, r(t) > 0 for t ≥ t0 − τ, (2.7)

in our search for the conditions ensuring the population suppression. When (2.7) holds,

r∗ =
b − 2m

µ [2m − b(1 − ξ)]
=

ξ0

µ(ξ − ξ0)
> 0. (2.8)

We show that r∗ defines a lower bound for the releasing efforts, in the sense that if the supremum of
r(t) in t ≥ t0 − τ is below r∗, then A(t) is bounded below by a positive constant. Corresponding to a
constant release ratio r(t) ≡ r, (1.3) has an equilibrium point

A∗r =

(
b

2m
·

1 + µ(1 − ξ)r
1 + µr

− 1
)

K, (2.9)

besides A ≡ 0. By comparing (2.6) and (2.9) we see that A∗r reduces to A∗0 when r = 0, which confirms
the consistency in the definitions (2.6) and (2.9). It is easy to check that A∗r decreases in r ≥ 0, which
is positive for r ∈ [0, r∗), vanishes uniquely at r = r∗, and becomes negative for r > r∗.

Theorem 2.3. Let (2.7) hold. Suppose that r = sup[t0−τ,∞) r(t) < r∗. Then for each φ ∈ C([t0 −

τ, t0], (0,∞)), the solution A(t) = A(t, t0, φ) of (1.3) satisfies

0 < A∗r ≤ lim inf
t→∞

A(t) ≤ lim sup
t→∞

A(t) ≤ A∗r , (2.10)

where r = inf[t0−τ,∞) r(t).
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Proof. From the assumption r < r∗ and the discussion on A∗r before the statement of this theorem, we
see that A∗r > 0. For an arbitrary positive number a1 < A∗r and a1 < φ(t) on [t0 − τ, t0], we claim
A(t) > a1 for all t ≥ t0. Indeed, if this is not true, then we may let t1 > t0 be the least time at which
A = a1. Hence A(t) > a1 in [t0, t1), A(t1) = a1, and A′(t1) ≤ 0. Substituting t = t1 into (1.3) leads to

m
(
1 +

a1

K

)
a1 ≥

b
2

1 + µ(1 − ξ)r(t1 − τ)
1 + µr(t1 − τ)

A(t1 − τ)

>
b
2

1 + µ(1 − ξ)r
1 + µr

a1.

Consequently, we derive

1 +
a1

K
>

b
2m
·

1 + µ(1 − ξ)r
1 + µr

⇒ a1 >

(
b

2m
·

1 + µ(1 − ξ)r
1 + µr

− 1
)

K = A∗r .

This contradicts our assumption a1 < A∗r and establishes the claim. As a result, it also holds that the
lower limit A ≥ a1.

We use the fluctuation lemma again to complete the proof for the first part of (2.10). Let {sn} be an
increasing and divergent sequence such that A(sn) → A and A′(sn) → 0 as n → ∞. Replacing t by sn

in (1.3) gives

m
(
1 +

A(sn)
K

)
A(sn) ≥

b
2

1 + µ(1 − ξ)r
1 + µ r

A(sn − τ) − A′(sn).

By taking the infimum limit, we obtain

m
(
1 +

A
K

)
A ≥

b
2

1 + µ(1 − ξ)r
1 + µ r

A,

from which a simplification of terms gives A ≥ A∗r .
As A ≥ A > 0, we can use the fluctuation lemma directly to prove the second part of (2.10). Let {tn}

be a divergent sequence such that A(tn)→ A and A′(tn)→ 0 as n→ ∞. Let t = tn in (1.3). We have

m
(
1 +

A(tn)
K

)
A(tn) ≤

b
2

1 + µ(1 − ξ)r
1 + µ r

A(tn − τ) − A′(tn).

By taking the supremum limit, we obtain

m
1 +

A
K

 A ≤
b
2

1 + µ(1 − ξ)r
1 + µ r

A.

With a slight simplification, we find A ≤ A∗r by the definition (2.9) of A∗r . �

When r(t) ≡ r for a constant r ∈ (0, r∗), an over-simplified assumption on the releasing efforts that
the number of released males is proportional to the wild male number, we have r = r = r and Theorem
2.3 implies limt→∞ A(t) = A∗r > 0. It indicates that A∗r and A∗r probably provide the sharpest estimates
for the lower and upper limits of A(t).
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2.3. The threshold release level for population suppression

We now prove that r∗ sets a threshold level of infected male mosquito release for population sup-
pression: As long as r(t) ≥ r∗, the wild population will be eliminated ultimately. It indicates further
that ξ0 defines the threshold CI intensity over which a complete mosquito elimination is ascertained
provided additionally that the release ratio r(t) ≥ r∗.

Theorem 2.4. Let (2.7) hold. Suppose there is T > 0 such that r(t) ≥ r∗ for t ≥ T. Then for any
φ ∈ C([t0 − τ, t0], (0,∞)), limt→∞ A(t, t0, φ) = 0.

Proof. It suffices to show that the upper limit A = 0. By the fluctuation lemma, there exists a divergent
sequence {tn} such that A(tn) → A and A′(tn) → 0 as n → ∞. When n is sufficiently large such that
tn ≥ T + τ, (1.3) gives

m
(
1 +

A(tn)
K

)
A(tn) =

b
2

1 + µ(1 − ξ)r(tn − τ)
1 + µ r(tn − τ)

A(tn − τ) − A′(tn)

≤
b
2

1 + µ(1 − ξ)r∗

1 + µ r∗
A(tn − τ) − A′(tn).

Taking limit gives

m
1 +

A
K

 A ≤
b
2

1 + µ(1 − ξ)r∗

1 + µ r∗
lim sup

n→∞
A(tn − τ)

≤
b
2

1 + µ(1 − ξ)r∗

1 + µ r∗
A.

The inequality holds when A = 0. If A > 0, then

m
1 +

A
K

 ≤ b
2

1 + µ(1 − ξ)r∗

1 + µ r∗
⇒ A ≤

(
b

2m
1 + µ(1 − ξ)r∗

1 + µ r∗
− 1

)
K = A∗r∗

by the definition of A∗r in (2.9). However, as we have noticed that A∗r∗ = 0 right before the statement
of Theorem 2.3, the last inequality leads to A ≤ 0 and a contradiction. Therefore, it must hold that
A = 0. �

3. Further quantification of the hindrance by impaired mating competitiveness and CI

3.1. The dependence of the thresholds on parameters

In accordance with the basic assumptions (1.4), (2.1), and (2.7), the following condition will be
maintained in the discussion below:

b, τ, K > 0; m ∈ (0, 1); µ > 0; ξ ∈ (0, 1]; ξ0 = 1 −
2m
b

> 0. (3.1)

In Theorems 2.1 – 2.4, we have identified ξ0 as the threshold of the CI intensity, and

r∗ = r∗(µ, ξ) =
b − 2m

µ [2m − b(1 − ξ)]
=

ξ0

µ(ξ − ξ0)
> 0 (3.2)
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as the threshold for r(t) = 2R(t)/A(t) – the ratio between the abundance R(t) of released males infected
by a novel Wolbachia strain absent in the natural population and the abundance A(t)/2 of wild male
adults. As b/m can be interpreted as the net production rate of wild females, we see from (3.1) that the
threshold CI intensity ξ0 is an increasing function of the natural reproduction rate of wild mosquitoes. If
the infection does not induce complete CI and the CI intensity ξ < ξ0, then the population suppression
is improbable no matter how many infected males are released in the wild area. If ξ > ξ0 and for
some T > 0, r(t) ≥ r∗ for t ≥ T , then the wild mosquito population will be eliminated ultimately. If
r = sup[t0−τ,∞) r(t) < r∗, then A(t) is bounded below by the constant A∗r > 0 with

A∗r =

(
b

2m
·

1 + µ(1 − ξ)r
1 + µr

− 1
)

K

as defined in (2.9).
Our theorems are inclined to support a more important role of the CI intensity than the mating com-

petitiveness µ in the population suppression. In contrary to the existence of the threshold CI intensity,
our model does not generate a threshold level of µ. Since µ and the release ratio r(t) appear together in
two product forms of µr(t − τ), they relate reciprocally and a decrease in µ can be compensated by a
propositional increase in r(t − τ). As shown in (3.2), the threshold release ratio r∗ is reciprocal to each
of µ and ξ − ξ0. The CI intensity ξ0 not only warns an absolute failure of the population suppression
when ξ < ξ0, it also predicts a great challenge of mosquito control when ξ is not considerably higher
than ξ0.
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Figure 1. The dependence of the threshold releasing ratio r∗ on the CI intensity ξ and the
mating competitiveness µ. (A) r∗ decreases in both ξ ∈ [0.91, 1] and µ ∈ [0.5, 1] with the
maximum r∗(0.5, 0.91) = 180 and the minimum r∗(1, 1) = 9. (B) For fixed µ = 0.5, 0.75, 1,
r∗ has a relatively flat variation when the CI is close to be complete, but becomes very sensi-
tive and increases sharply when ξ is close to the threshold intensity ξ0 = 0.9.

For Aedes albopictus in Guangzhou, we have estimated b ∈ [0.9043, 6.4594], τ ∈ [16, 66], and
m ∈ [0.0198, 0.1368] in [25], by combining the laboratory [32, 33, 34, 35] and field [27, 29, 34] data.
To make our observations above more specific and transparent, we recall from our discussion on ξ and
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µ in the introduction and fix

b = 2, µ ∈ [0.5, 1], ξ ∈ [0.91, 1], m = 0.1, τ = 19, K = 20, 000. (3.3)

The constant K does not alter the CI intensity threshold ξ0 or the release ratio threshold r∗ and shows
only a minimal impact on the dynamical behavior of A(t). As it scales with the size of the studying
area, we take K = 20, 000 as a representative example. Clearly, the parameters in (3.3) satisfy (3.1)
and determine ξ0 = 0.9.

The dependence of r∗ on ξ ∈ [0.91, 1] and µ ∈ [0.5, 1] is shown in Figure 1A, and its dependence
on ξ for fixed µ = 0.5, 0.75, 1, is shown in Figure 1B. It decreases in both ξ and µ with the maximum
value r∗(0.5, 0.91) = 180 and the least value r∗ = r∗(1, 1) = 9. It indicates that for a complete
elimination of wild Aedes mosquitoes, at least a ratio 9:1 of the released males over wild males needs
to be maintained. Although it appears higher than the 5:1 ratio estimated in [25], the two different
ratios do not contradict each other because the latter is estimated at the initial time with r(0) = 5 in a
constant releasing policy with R(t) ≡ R(0). As shown in Figure 1B, the threshold ratio r∗ is extremely
sensitive to the CI intensity ξ when it is close to the threshold CI intensity level ξ0 = 0.9. Even with
an equal mating competitiveness µ = 1, a slight change from ξ = 0.92 to ξ = 0.91 doubles r∗ from
r∗(1, 0.92) = 45 to r∗(1, 0.91) = 90. On the other hand, when the CI is close to be complete, the change
of r∗ is relatively flat; e.g., 9 ≤ r∗ ≤ 18 for ξ ∈ [0.95, 1] and µ = 1.

3.2. The individual impacts on the suppression dynamics

We use numerical examples to demonstrate further that a reduction in the CI intensity ξ causes
substantially higher damages than a reduction in the mating competitiveness µ in the population sup-
pression. We compare the dynamical behavior of A(t) with varying ξ or µ but fix the other parameter at
1. In the simulations, we use the same values for b, m, τ, and K as in (3.3). The environmental carrying
capacity A∗0 determined by (2.6) equals 9K = 180, 000. For specificity, we also fix

φ(t) = 20, 000, t ∈ [−19, 0], r(t) ≡ 14. (3.4)

The initial population size in the area is 1/9 of the carrying capacity, while the releasing ratio is larger
than the threshold value r∗(1, 1) = 9.

In Figure 2A, the mating competitiveness is fixed at µ = 1 and the CI intensity decreases from 1
to 0.95 and 0.92. In agree with Theorem 2.4, A(t) → 0 as t → ∞ when ξ = 1. When ξ decreases to
0.95 or 0.92, a complete population suppression is impossible and Theorem 2.3 implies that A(t) →
A∗14 ≈ 2667 and A(t) → A∗14 ≈ 8267, respectively, as t → ∞. Although the wild population is not
completely eliminated in the latter two cases, it is suppressed by (180, 000−2667)/180, 000 ≈ 98.52%
and (180, 000 − 8267)/180, 000 ≈ 95.41% comparing to the steady-state (or the carrying capacity) of
the wild population without Wolbachia intervention. In Figure 2B, ξ = 1 and µ decreases from 1 to
0.75 and 0.5. Interestingly, even when µ is decreased by 25% from 1 to 0.75, it still holds that A(t)→ 0
as t → ∞. For µ = 0.5, we have A(t) → A∗14 = 5000 as t → ∞. As 8267 > 5000, we see that a
slight decrease of the CI intensity from 1 to 0.92 is more devastating in the population suppression
than halving the mating competitiveness from 1 to 0.5.
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Figure 2. The impacts of the CI intensity and the mating competitiveness on the suppression
dynamics. (A) With µ = 1, the suppression succeeds when ξ = 1 but fails when ξ decreases
slightly to 0.95 or 0.93. (B) With ξ = 1, the suppression succeeds when µ = 1 and µ = 0.75
and fails when µ = 0.5. All other parameters are taken from (3.3) and (3.4).

3.3. Mosquito suppression during the peak season

Aedes albopictus in Guangzhou overwinters as diapause eggs with few surviving adults in open ar-
eas from December to February. With the elevation of temperature and precipitation in the spring, most
diapause eggs start hatching at the turn of February to March. The adult population grows rapidly from
the middle of March and reaches the first peak of the year in late May or early June [28, 29]. The popu-
lation declines in the hot summer and bounces back to reach the second peak in September or October
[26, 4]. The high-incidence season of dengue fever overlaps the second peak of mosquito abundance at
the turn of September to October [36]. Breaking down the second peak of Aedes mosquitoes provides
a temporary and efficient control of dengue transmission. Suppose we target at a more than 95% re-
duction of the adult mosquitoes on October 1 by a Wolbachia driven approach. When shall the infected
male release be started? We note that a perfect answer to this question may not be reached easily as it
involves many factors such as weather conditions, financial resource, labors, and the community sup-
port. In the remaining discussion, we use a numerical simulation based on our model to give a partial
answer.

In the simulation, we use again the values for b, m, τ, and K specified in (3.3), which determine the
carrying capacity A∗0 = 180, 000. Set t0 = 0 on March 1 before the burst of adult mosquito population
and let φ(t) = 10, 000 on [−19, 0]. With the starting date on the first day of each month from March
to September, we estimate the minimum constant releasing ratio and the corresponding number of
released males such that the number of the wild adults on October 1 (t ≈ 210) over the carrying
capacity 180, 000 is less than 5%. For a given pair of µ > 0 and ξ ∈ [0, 1], we denote by r = rm(µ, ξ)
the minimum constant release ratio, andN = N(µ, ξ) the total number of released males. For µ = 0.75
and ξ = 1, the temporal profiles of the wild adults interfered by infected male mosquitoes starting on
different dates are shown in Figure 3A. We find rm = 41.8 when the releasing starts on September
1, which reduces sharply to rm = 16.6 when it starts one month early from August 1, and reduces
moderately to rm = 11.8 when it starts another month early on July 1. Very interestingly, we find that
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the ratio rm shows no significant reduction further when the starting date is shifted back to the first days
of June, May, April, and March. These numbers seem to suggest that starting on August, about two
months ahead of the target date, can be an optimal option for less financial and labor costs.
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Figure 3. Suppression of the wild Aedes albopictus population in the high-incidence season
of dengue fever. The parameters b, m, τ, and K are specified in (3.3); t0 = 0 on March 1
and φ(t) = 10, 000 on [−19, 0]. (A) With µ = 0.75, ξ = 1, the temporal profiles of the
wild adults interfered by infected male mosquitoes at the indicated constant releasing ratios
starting on the first days from March to September. (B) and (C) The minimum releasing
ratios rm(µ, ξ) for (µ, ξ) = (1, 1), (0.75, 1), (1, 0.95) in different starting dates for a more than
95% suppression of wild mosquitoes on October 1. (D) The total numberN(µ, ξ) of released
males from different starting dates.

We examine further the variations of the minimum release ratio rm(µ, ξ) and the total numberN(µ, ξ)
on the starting dates for (µ, ξ) = (1, 1), (0.75, 1), (1, 0.95). The values of rm are depicted in Figure 3B,
C, and the values ofN are depicted in Figure 3D; see also Table 1 where these numbers are listed. The
variations of rm(1, 1), N(1, 1), and N(0.75, 1) on the starting dates all follow the same pattern as we
discussed above for (0.75, 1): A large reduction is seen when the date is moved from September 1 back
to August 1, and only a moderate reduction is shown if the dates are moved back further. In addition,
a 25% reduction in the mating competitiveness from µ = 1 to µ = 0.75 requires only a moderate
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30% − 35% increase in the releasing amounts. In agree with our discussion in the previous section, a
mild 5% reduction in the CI tensity from ξ = 1 to ξ = 0.95 causes more damages in the suppression
than a 25% reduction in µ. The devastating impact is more obvious when the starting date is close to
the target date October 1. For (µ, ξ) = (1, 0.95), our simulation reveals that it is nearly impossible to
meet the suppression goal within one month: For a starting date on September 1, we find that even
for the releasing ratio as high as r = 10000, 16000, 20000, the adult abundances on October 1 are still
7.39%, 7.33%, 7.20% over the carrying capacity. As shown in Table 1, rm(1, 095) = 39 when the
release starts on August 1, and reduces sharply to 17.2 if it starts on July 1, but shows no significant
reduction in earlier starting dates. These numbers suggest an optimal starting date in July for male
mosquito releasing in this case, other than August in the other two cases. In summary, a loss in the
CI intensity causes considerably more damages in the suppression of wild mosquito populations than
the same magnitude of loss in the mating competitiveness. To reduce the adult population by more
than 95% during the dengue fever peak season, an optimal starting date for infected male mosquito
release is about three months ahead when the CI intensity is reduced by 5%. In a sharp contrast, when
CI is complete, a two month implementation of the control measures is sufficient even if the mating
competitiveness is reduced up to 25%.

Table 1. The minimum constant release ratio rm(µ, ξ) and the total number N(µ, ξ) of re-
leased males to reduce 95% of wild Aedes mosquitoes on October 1. The parameters b, m, τ,
and K are specified in (3.3); t0 = 0 on March 1 and φ(t) = 10, 000 on [−19, 0].

Start Date rm(1, 1), N(1, 1) rm(0.75, 1), N(0.75, 1) rm(1, 0.95), N(1, 0.95)
Sept 1 32.2, 1.8409×107 41.8, 2.4195×107

Aug 1 12.6, 1.2538×107 16.6, 1.6635×107 39, 3.8895×107

July 1 8.8, 1.1896×107 11.8, 1.6112×107 17.2, 2.3286×107

June 1 7.4, 1.1886×107 9.8, 1.5848×107 12.8, 2.0535×107

May 1 6.8, 1.1395×107 9, 1.5197×107 11, 1.8596×107

Apr 1 6.4, 0.9951×107 8.6, 1.3249×107 10, 1.5750×107

Mar 1 6, 0.6489×107 8, 0.8651×107 9.2, 0.9996×107
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