The incompatible insect technique based on Wolbachia is a promising alternative to control mosquito-borne diseases, such as dengue fever, malaria, and Zika, which drives wild female mosquitoes sterility through a mechanism cytoplasmic incompatibility. A successful control program should be able to withstand the perturbation induced by the immigration of fertilized females from surrounding uncontrolled areas. In this paper, we formulated a system of delay differential equations, including larval and adult stages, interfered by Wolbachia-infected males. We classified the release number of infected males and immigration number of fertile females, to ensure that the system displays globally asymptotically stable or bistable dynamics. The immigration of fertile females hinders the maximum possible suppression efficiency so that the wild adults cannot be reduced to a level below $ A^*_\infty $. We identified the permitted most migration number to reduce the wild adults to a target level. To reduce up to $ 90\% $ of wild adults in the peak season within two months, an economically viable strategy is to reduce the immigration number of wild females less than $ 0.21\% $ of the carrying capacity of adults in the control area.
Citation: Mugen Huang, Zifeng Wang, Zixin Nie. A stage structured model for mosquito suppression with immigration[J]. Mathematical Biosciences and Engineering, 2024, 21(11): 7454-7479. doi: 10.3934/mbe.2024328
The incompatible insect technique based on Wolbachia is a promising alternative to control mosquito-borne diseases, such as dengue fever, malaria, and Zika, which drives wild female mosquitoes sterility through a mechanism cytoplasmic incompatibility. A successful control program should be able to withstand the perturbation induced by the immigration of fertilized females from surrounding uncontrolled areas. In this paper, we formulated a system of delay differential equations, including larval and adult stages, interfered by Wolbachia-infected males. We classified the release number of infected males and immigration number of fertile females, to ensure that the system displays globally asymptotically stable or bistable dynamics. The immigration of fertile females hinders the maximum possible suppression efficiency so that the wild adults cannot be reduced to a level below $ A^*_\infty $. We identified the permitted most migration number to reduce the wild adults to a target level. To reduce up to $ 90\% $ of wild adults in the peak season within two months, an economically viable strategy is to reduce the immigration number of wild females less than $ 0.21\% $ of the carrying capacity of adults in the control area.
[1] | World Health Organization, Global strategy for dengue prevention and control 2012–2020, 2012. Available from: https://iris.who.int/bitstream/handle/10665/75303/9789241504034_eng.pdf. |
[2] | S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507. https://doi.org/10.1038/nature12060 doi: 10.1038/nature12060 |
[3] | A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. H. Johnson, F. Muzzi, et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011), 454–457. https://doi.org/10.1038/nature10356 doi: 10.1038/nature10356 |
[4] | X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. https://doi.org/10.1038/s41586-019-1407-9 doi: 10.1038/s41586-019-1407-9 |
[5] | Z. Xi, C. C. Khoo, S. L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326–328. https://doi.org/10.1126/science.1117607 doi: 10.1126/science.1117607 |
[6] | M. P. Atkinson, Z. Su, N. Alphey, L. S. Alphey, P. G. Coleman, L. M. Wein, Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system, PNAS, 104 (2007), 9540–9545. https://doi.org/10.1073/pnas.0610685104 doi: 10.1073/pnas.0610685104 |
[7] | B. Zheng, M. Tang, J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math., 74 (2014), 743–770. https://doi.org/10.1137/13093354X doi: 10.1137/13093354X |
[8] | L. Hu, M. Huang, M. Tang, J. Yu, B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106 (2015), 32–44. https://doi.org/10.1016/j.tpb.2015.09.003 doi: 10.1016/j.tpb.2015.09.003 |
[9] | L. Hu, M. Tang, Z. Wu, Z. Xi, J. Yu, The threshold infection level for Wolbachia invasion in random environments, J. Diff. Equ., 266 (2019), 4377–4393. https://doi.org/10.1016/j.jde.2018.09.035 doi: 10.1016/j.jde.2018.09.035 |
[10] | M. Huang, M. Tang, J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77–96. https://doi.org/10.1007/s11425-014-4934-8 doi: 10.1007/s11425-014-4934-8 |
[11] | M. Huang, J. Yu, L. Hu, B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249–1266. https://doi.org/10.1007/s11425-016-5149-y doi: 10.1007/s11425-016-5149-y |
[12] | M. Huang, J. Lou, L. Hu, B. Zheng, J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1–11. https://doi.org/10.1016/j.jtbi.2017.12.012 doi: 10.1016/j.jtbi.2017.12.012 |
[13] | Y. Hui, G. Lin, J. Yu, J. Li, A delayed differential equation model for mosquito population suppression with sterile mosquitoes, Discrete Contin. Dyn. Syst. B, 25 (2020), 4659–4676. https://doi.org/10.3934/dcdsb.2020118 doi: 10.3934/dcdsb.2020118 |
[14] | J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Diff. Equ., 269 (2020), 10395–10415. https://doi.org/10.1016/j.jde.2020.07.019 doi: 10.1016/j.jde.2020.07.019 |
[15] | M. Huang, M. Tang, J. Yu, B. Zheng, The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression, Math. Bios. Eng., 16 (2019), 4741–4757. https://doi.org/10.3934/mbe.2019238 doi: 10.3934/mbe.2019238 |
[16] | B. Zheng, J. Yu, Z. Xi, M. Tang, The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 387 (2018), 38–48. https://doi.org/10.1016/j.ecolmodel.2018.09.004 doi: 10.1016/j.ecolmodel.2018.09.004 |
[17] | D. Li, H. Wan, The threshold infection level for Wolbachia invasion in a two-sex mosquito population model, Bulletin Math. Biol., 81 (2019), 2596–2624. https://doi.org/10.1007/s11538-019-00620-1 doi: 10.1007/s11538-019-00620-1 |
[18] | B. Zheng, M. Tang, J. Yu, J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235–263. https://doi.org/10.1007/s00285-017-1142-5 doi: 10.1007/s00285-017-1142-5 |
[19] | X. Zhang, S. Tang, R. A. Cheke, Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control, Nonlinear Anal. Real World Appl., 22 (2015), 236–258. https://doi.org/10.1016/j.nonrwa.2014.09.004 doi: 10.1016/j.nonrwa.2014.09.004 |
[20] | J. Yu, J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Diff. Equ., 269 (2020), 6193–6215. https://doi.org/10.1016/j.jde.2020.04.036 doi: 10.1016/j.jde.2020.04.036 |
[21] | J. Yu, J. Li, A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol., 84 (2022), 14. https://doi.org/10.1007/s00285-022-01718-2 doi: 10.1007/s00285-022-01718-2 |
[22] | M. Huang, M. Tang, J. Yu, B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Discrete Contin. Dyn. Syst., 40 (2020), 3467–3484. https://doi.org/10.3934/dcds.2020042 doi: 10.3934/dcds.2020042 |
[23] | P. I. Bliman, Y. Dumont, Robust control strategy by the sterile insect technique for reducing epidemiological risk in presence of vector migration, Math. Biosci., 350 (2022), 108856. https://doi.org/10.1016/j.mbs.2022.108856 doi: 10.1016/j.mbs.2022.108856 |
[24] | M. Huang, J. Yu, Modeling the impact of migration on mosquito population suppression, Qual. Theor. Dyn. Syst., 22 (2023), 134. https://doi.org/10.1007/s12346-023-00834-8 doi: 10.1007/s12346-023-00834-8 |
[25] | T. Prout, The joint effects of the release of sterile males and immigration of fertilized females on a density regulated population, Theor. Popul. Biol., 13 (1978), 40–71. https://doi.org/10.1016/0040-5809(78)90035-7 doi: 10.1016/0040-5809(78)90035-7 |
[26] | G. L. Goff, D. Damiens, A. H. Ruttee, L. Payet, C. Lebon, J. Dehecq, et al., Field evaluation of seasonal trends in relative population sizes and dispersal pattern of Aedes albopictus males in support of the design of a sterile male release strategy, Paras. Vectors, 12 (2019), 81. https://doi.org/10.1186/s13071-019-3329-7 doi: 10.1186/s13071-019-3329-7 |
[27] | F. Liu, C. Zhou, P. Lin, Studies on the population ecology of Aedes albopictus–-The seasonal abundance of natural population of Aedes albopictus in Guangzhou, Acta Sci. Natur. Universitatis Sunyatseni, 29 (1990), 118–122. |
[28] | A. Tr'ajer, T. Hammer, I. Kacsala, B. Tánczos, N. Bagi, J. Padisák, Decoupling of active and passive reasons for the invasion dynamics of Aedes albopictus Skuse (Diptera: Culicidae): Comparisons of dispersal history in the Apennine and Florida peninsulas, J. Vect. Ecol., 42 (2017), 233–242. https://doi.org/10.1111/jvec.12263 doi: 10.1111/jvec.12263 |
[29] | Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu, et al., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis., 8 (2014), e3301. https://doi.org/10.1371/journal.pntd.0003301 doi: 10.1371/journal.pntd.0003301 |
[30] | F. Liu, C. Yao, P. Lin, C. Zhou, Studies on life table of the natural population of Aedes albopictus, Acta Sci. Natur. Universitatis Sunyatseni, 31 (1992), 84–93. |
[31] | P. A. Ross, N. M. Endersby, H. L. Yeap, A. A. Hoffmann, Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia infected Aedes aegypti, Am. J. Trop. Med. Hyg., 9 (2014), 198–205. https://doi.org/10.4269/ajtmh.13-0576 doi: 10.4269/ajtmh.13-0576 |
[32] | R. K. Walsh, L. Facchinelli, J. M. Ramsey, J. G. Bond, F. Gould, Assessing the impact of density dependence in field populations of Aedes aegypti, J. Vector Ecol., 36 (2011), 300–307. https://doi.org/10.1111/j.1948-7134.2011.00170.x doi: 10.1111/j.1948-7134.2011.00170.x |
[33] | D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, J. R. L. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), e0121126. https://doi.org/10.1371/journal.pone.0121126 doi: 10.1371/journal.pone.0121126 |
[34] | P. Cailly, A. Tran, T. Balenghien, G. L'Ambert, C. Toty, P. Ezanno, A climate driven abundance model to assess mosquito control strategies, Ecol. Model., 227 (2012), 7–17. https://doi.org/10.1016/j.ecolmodel.2011.10.027 doi: 10.1016/j.ecolmodel.2011.10.027 |
[35] | H. I. Freedman, Deterministic mathematical models in population ecology, 2$^{nd}$ edition, HIFR Consulting LTD, Edmonton, 1987. |
[36] | H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Springer, New York, 2011. |
[37] | J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187. https://doi.org/10.1137/18M1204917 doi: 10.1137/18M1204917 |
[38] | D.R. Curtiss, Recent extensions of Descartes' Rule of signs, Annals of Math., 19 (1918), 251–278. https://doi.org/10.2307/1967494 doi: 10.2307/1967494 |
[39] | J. Waldock, N. L. Chandra, J. Lelieveld, Y. Proestos, E. Michael, G. Christophides, et al., The role of environment variables on Aedes albopictus biology and Chikungunya epidemiology, Pathog. Glob. Health., 107 (2013), 224–240. https://doi.org/10.1179/2047773213Y.0000000100 doi: 10.1179/2047773213Y.0000000100 |
[40] | Z. Zhong, G. He, The life table of laboratory Aedes albopictus under various temperatures, Academic J. Sun Yat-sen Univ. Med. Sci., 9 (1988), 35–39. |
[41] | A. Tran, G. L'Ambert, G. Lacour, R. Benoît, M. Demarchi, M. Cros, et al., A rainfall and temperature driven abundance model for Aedes albopictus populations, Int. J. Environ. Res. Public Health, 10 (2013), 1698–1719. https://doi.org/10.3390/ijerph10051698 doi: 10.3390/ijerph10051698 |
[42] | P. A. Hancock, V. L. White, A. G. Callahan, C. H. J. Godfray, A. A. Hoffmann, S. A. Ritchie, Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia, J. Appl. Ecol., 53 (2016), 785–793. https://doi.org/10.1111/1365-2664.12620 doi: 10.1111/1365-2664.12620 |
[43] | P. J. Huxley, K. A. Murray, S. Pawar, L. J. Cator, Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti, Commun. Biol., 5 (2022), 66. https://doi.org/10.1038/s42003-022-03030-7 doi: 10.1038/s42003-022-03030-7 |
[44] | P. E. Parham, E. Michael, Modeling the effects of weather and climate change on malaria transmission, Environ. Health Perspect., 118 (2010), 620–626. https://doi.org/10.1289/ehp.0901256 doi: 10.1289/ehp.0901256 |